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Abstract

A new behavioral concept, local rationality, is developed within the context of a simple
heterogeneous-agent model with incomplete markets. To make savings decisions, agents fore-
cast the shadow price of asset holdings. Absent aggregate uncertainty, locally rational agents
forecast shadow prices rationally, and thereby make optimal state-contingent decisions. They
use adaptive learning to extend their forecasts to accommodate aggregate uncertainty. Over
time the state evolves to an ergodic distribution near the economy’s restricted perceptions equi-
librium. In a partial equilibrium environment we develop intuition for locally rational decision
making, documenting an important hysteresis effect. General equilibrium dynamics are ex-
amined via a calibration exercise. Calibrated representative-agent RBC models induce low
consumption volatility relative to the data. Extending the model by either incorporating adap-
tive learning or heterogeneous agents fails to alter this conclusion. Via the hysteresis effect,
local rationality, which interacts heterogeneity and adaptive learning, significantly improves
the model’s fit along this dimension.

JEL Classifications: E31; E32; E52; D84; D83

Key Words: Bounded rationality; real business cycles; heterogenous agent models; adaptive learn-
ing

1 Introduction

Aiyagari (1994) introduced uninsurable idiosyncratic risk into a real economy with capital in his
work on precautionary savings motives; in doing so, he illustrated the potential of Bewley models
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to serve as laboratories for the study of incomplete markets in general equilibrium environments.
By developing the needed technical machinery to incorporate aggregate risk into Aiyagari’s model,
Krusell and Smith (1998) (KS) realized this illustrated potential, and the era of heterogeneous agent
(HA) models had arrived. HA models now figure prominently in the standard canon of first-year
courses in macroeconomics and in the standard toolkit of working macroeconomists.

HA models allow economists to relax the rigid representative agent (RA) assumption and
thereby consider the dynamics of wealth distributions, and the models have had some success
explaining the distributional dynamics observed in the data. However, HA models generally fare
no better than RA models when confronting stylized business cycle facts. In fact, in many cases, an
HA model calibrated to the same long-run moments as an RA model will feature nearly identically
business cycle moments. For example, in a standard RBC environment both RA and HA models are
qualitatively successful in their prediction of consumption smoothing, but they are quantitatively
off: fully rational agents, regardless of the economic environment, smooth consumption more than
is evidenced in the data.1

Theoretical concerns also challenge the heterogeneous-agent modeling paradigm. HA mod-
els are almost ubiquitously anchored to the rational expectations (RE) hypothesis, and the myriad
criticisms leveled at the assumption of rational expectations as a behavioral primitive apply with
magnified vigor when models include heterogeneity of the type under consideration here. A singu-
larly damning criticism involves optimal decision making in the HA environment. To solve their
dynamic program, and thereby make fully rational choices, an agent must understand the transition
dynamics of their state, which in an HA model includes the wealth distribution. This distribution is
an infinite dimensional object with transition dynamics whose very existence remains only specu-
lative.2 How are we to take seriously a model that presupposes full knowledge of a complex object
that the modelers can’t even prove exists?

Bounded rationality, broadly interpreted to include boundedly optimal decision making, pro-
vides a natural behavioral alternative to rational expectations. Economic agents are modeled as
small players in a big world, adhering to a collection of behavioral primitives governing decision
making that are designed to be more realistic than their rational counterparts. Agents’ attendant ac-
tions are coordinated each period via market clearing; these temporary equilibrium outcomes then
determine the dynamics of economic aggregates; and the short and long run patterns exhibited by
these aggregate dynamics comprise the implications of the model.

Our goal, in this paper, is to develop a behavioral approach that addresses the theoretical and
empirical challenges to HA models populated by rational agents. We study bounded rationality
in an HA environment using a standard heterogeneous-agent model along the lines of Krusell and
Smith (1998) by introducing a new behavioral concept – local rationality. Informally, a locally
rational agent knows (i.e. has already learned) how to respond optimally to idiosyncratic (local)

1Stadler (1994) provides a nice survey of various representative-agent RBC implementations and their empirical
successes and failures. Krusell and Smith (1998) established the inability of RBC-type HA models to overcome the
corresponding inability of RA models to match certain aggregate moments.

2We know of no global general existence results for HA models; however, a recent and exciting contribution of
Cao (2020) demonstrates the existence of REE in the Krusell-Smith model.
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shocks, but must learn how to account for aggregate (global) shocks. The rationale for this is that
it’s reasonable to assume agents know how to forecast and respond well to their individual states,
but they are less certain about how the aggregate state vector evolves and how its evolution should
inform their decisions. We use the shadow price approach, developed in Evans and McGough
(2020b), to model how agents respond to variation in aggregates.

The advantage of the shadow price approach is the simplicity it affords agents: they make
decisions based on perceived trade offs which they measure using shadow prices, and they form
expectations of future shadow prices using simple linear forecast rules, or perceived laws of mo-
tion (PLMs), which they update over time using learning algorithms. Agents are not required to
understand the evolution of the economy’s states nor are they required to solve complex, nonlinear
dynamic programs. We follow the literature on adaptive learning by assuming our agents use re-
cursive least squares (RLS), which adjusts coefficient estimates in accordance with the most recent
forecast error. The weight placed on the forecast error is controlled by the algorithm’s gain, which
may be taken as constant over time, or decreasing at a suitable rate.

The use of a recursive least squares motivates a natural long-run solution concept for this
environment: a restricted perceptions equilibrium (RPE). An RPE is a natural generalization of a
rational expectations equilibrium (REE) to environments in which agents use misspecified linear
forecast models when making decisions. Under restricted perceptions, agents are assumed to
restrict consideration to forecast models having the same functional form as their perceived laws
of motion. In an RPE, agents are not updating their forecast models; instead, each agent is using
the optimal forecast model among those under consideration, where optimality here is measured
in terms of long-run expected squared forecast error. We note that, in a linearized, representative-
agent modeling environment, if agents are using a PLM that has the same functional form as
the model’s rational expectations equilibrium, then the RPE is the REE. In this sense, a rational
expectations equilibrium is a special case of a restricted perceptions equilibrium.

A restricted perceptions equilibrium is a Nash concept: the optimality of a given agent’s fore-
cast model depends on the forecast models being used by other agents. The RPE thus serves as a
natural anchor for long run equilibrium behavior in models under adaptive learning. If the model’s
RPE is stable then decreasing gain algorithms result in convergence of agents’ beliefs to the RPE.
Constant-gain algorithms, which remain alert to changing economic conditions, are natural alterna-
tives for agents concerned with forecast-model misspecification. Learning algorithms of this type
cannot, even asymptotically, lead to constant beliefs; however, even when constant-gain algorithms
are used, an RPE a natural object to study as the long ergodic distribution of beliefs is generally
near the RPE. While an RPE does not a priori impose that all agents use the same forecast model,
we find that, at least for small shocks, homogeneity is a feature of any RPE of our model.

To flesh out the behavioral implications of local rationality, we consider a locally rational (LR)
agent acting in a partial equilibrium environment. To engender tractability we adopt CARA prefer-
ences in consumption. The agent owns a stochastic income flow and makes consumption/savings
decisions in face of a (stationary) stochastic return. In this environment, the manifestation of local
rationality is that the agent knows how to make optimal decisions if the return is held permanently
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at its mean, but must learn how to respond to variations in the return.

Because of our simplifying assumptions, we are able to obtain a closed form solution to the
agent’s decisions when returns are constant; and using this form, together with first-order analysis
of the agent’s behavior when returns are stochastic, we are able to carefully compare the behavior
of our LR agent to that of a fully rational agent. A particularly important feature of LR behavior
is a hysteresis effect. The response of fully rational agents to changes in return are sensitive
to their contemporaneous asset holdings. On the other hand, the response of an LR agent to a
change in returns is determined by beliefs, which are relatively insensitive to contemporaneous
asset holdings, instead reflecting the agent’s accumulated experience. Even when LR agents are
wealthy, they remember being poor, and their behavior reflects it.

To assess the general equilibrium implications of locally rationality, we study a calibrated het-
erogenous agent economy. To isolate the interaction of bounded rationality and heterogeneous
agents, we compare outcomes to those of a representative agent model populated with either ra-
tional or learning agents, and a heterogeneous agent model populated with fully rational agents.
All models are calibrated to match the same long run moments.3 To simplify our exposition we
focus on a single business cycle moment: the relative volatility of consumption and output. A well
known issue with RA real business cycle models is that they fail to match this moment.

Our results confirm this finding in the literature: in the data std(C)/std(Y) = 0.50 whereas in the
RA calibration with a rational agent that ratio is 0.32. Neither bounded rationality nor heteroge-
neous agents can alter this ratio much on their own: in the RA model with shadow price learning4

the ratio varied from 0.32 to 0.34 while in the HA model under RE it was 0.36. However, when
bounded rationality and heterogeneity are combined in the locally rational model it is possible to
exactly match this ratio with a gain consistent with the literature.

To understand the interaction of bounded rationality and heterogeneity, recall that a key feature
of the RPE is that all agents have the same beliefs when forecasting their future shadow price of
savings. In a representative agent model, this feature is innocuous as all agents are ex-post identi-
cal. The same is not true in a heterogeneous agent model: the effect of an aggregate shock differs
across agents since agents differ both in their exposure to, and in their ability to smooth, aggregate
shocks. Poorer agents are more exposed to recessions than their richer counterparts, and as a con-
sequence, their consumption is more responsive to aggregate shocks. Under local rationality, this
leads to the hysteresis effect mentioned above. Rich agents remember what it was like to be poor
during a recession, and they adjust their forecasts and behaviors accordingly: the consumption of

3An advantage of our approach is that absent aggregate shocks the behavior of our agents are identical to those of
the rational expections model which results in the same calibrated parameters for preferences and technology.

4We focus on shadow price learning in part to maintain comparability with our locally rational model. In fact, in
the limit as the size of the idiosyncratic shocks approaches zero the locally rational model reduces to the RA model
with shadow price learning. Other learning assumptions produce similar results: Williams (2003) introduced CGL
into a real business cycle model and concluded that it was largely ineffective as a resolution to moment discrepancies.
In part because of his findings, most of the subsequent work on matching moments using models with learning agents
was conducting either in new Keynesian environments or in asset pricing models. Eusepi and Preston (2011) is an
important exception, though they too were unable to match consumption volatility relative to output volatility as
obtained from the data.
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wealthy locally rational agents is more volatile than their wealthy rational counterparts. Since ag-
gregate consumption is driven by the consumption patterns of wealthy agents, this higher volatility
is also realized on aggregate.

Under constant gain learning, agents adjust their beliefs over time. In the extreme limit when
the gain is very small, and the locally rational economy is approximately at the RPE, agents place
near equal weight on all of their past experience, which results in excess consumption volatility
relative to the data: std(C)/std(Y) = 0.70. As the gain parameter is increased, agents forget their past
experience at a faster rate and better adapt their behavior to their current context, which brings the
behavior of the locally rational model more in line with the rational expectations calibration. As a
result, the gain parameter has some surprising effects on business cycle moments. In a represen-
tative agent learning model, increasing the gain parameter has the predictable effect of increasing
the volatility of endogenous variables through the additional volatility of beliefs. As we have noted
this effect is often small relative to the baseline volatility of the RE model. In our locally rational
model, through the mechanism described above, increasing the gain parameters significantly re-
duces the volatility of some endogenous variables (consumption) and raises the volatility of others
(investment). While we focused on a simple RBC style model, we expect this mechanism to apply
more generally.

1.1 Related Literature

To our knowledge, implementation of bounded rationality in HA models is limited to Giusto
(2014). To explain his findings and how they bear on our efforts, it helps to first review the KS
computational technique, which, as it happens, uses an RPE to approximate the model’s REE. The
state vector of an HA model includes the economy’s wealth distribution, a high-dimensional object
that is not feasibly tracked. KS postulate that it is necessary only to track a finite number of mo-
ments of this distribution, thus simplifying the analysis. In fact, they argue that the first moment
is enough, i.e. it is sufficient for agents in the economy to forecast the aggregate capital stock, and
to do this, agents use a simple, linear forecast model. For a fixed parameterization of this forecast
model, agents’ behavior, and thus the implied dynamics of aggregate capital, can be computed;
and, via linear projection, the corresponding optimal linear forecast model can be determined. KS
declare victory when agents’ forecast model aligns with the optimal one, i.e. when the economy is
in an RPE.

Giusto (2014) adds adaptive learning to the methodology of KS. In Giusto’s world, agents up-
date their linear forecast model as new data become available. Other than that, agents act exactly as
they do in KS: each period agents fully solve their dynamic programing (DP) problem taking their
beliefs as given. This behavioral premise is known as the anticipated utility approach, originally
due to Kreps (1998), and is similar in spirit to the long horizon approach of Preston (2005). Guisto
shows that the KS RPE is stable under adaptive learning, and that learning implemented using a
decreasing gain algorithm allows the model to better match the dynamics of wealth distributions.

Our approach departs from Giusto in two important ways. First, our agents are not assumed
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to be able to solve DP problems with many aggregate states. Instead, they follow the cognitively
less demanding primitives laid out above to make decisions. Of particular note is that our agents,
in effect, repeatedly solve simple two-period problems based one-step-ahead forecasts; Guisto’s
agents solve DP problems based on forecasts at arbitrarily long horizons, and they must resolve
these programs every period. Second, we are not analyzing the stability of the REE, or, more
accurately, the KS RPE. The RPE we analyze is distinct from the KS RPE, and, as discussed in
Section 6, this distinction has important implications for moment matching.

As mentioned above, our implementation of boundedly optimal decision making is based on
the shadow-price approach, which is one of several mechanisms in the literature that link bound-
edly rational forecasting and boundedly optimal decision-making. Others include Euler-equation
learning found in Evans and Honkapohja (2006), the long horizon approach emphasized in Preston
(2005), and the sparse programming approach found in Gabaix (2017) and Gabaix (2020).5

Restricted perceptions equilibria have a venerated history in macroeconomics, particularly in
relation to boundedly rational behavior. The nomenclature was introduced in Evans and Honkapo-
hja (2001) but the concept is older: see Branch (2006) for a survey. Early work on the topic
involved linear environments in which the forecast model misspecification involved omitted vari-
ables: Marcet and Sargent (1989), Sargent (1991), Evans, Honkapohja, and Sargent (1993) and
Bullard, Evans, and Honkapohja (2008) study forecast rules that omit informative lags; and in
Branch and Evans (2006a), Branch and Evans (2007) and Adam (2007) the forecast models omit
relevant explanatory variables. Some recent work has linear forecast models in non-linear envi-
ronments, which is more closely related to the concepts pursued in this paper. In a non-linear real
business cycle environment, Evans, Evans, and McGough (2021a) demonstrate the existence of
RPE associated with linear forecast models.6 Hommes and Zhu (2014) introduce the closely re-
lated concept of behavioral learning equilibria, which casts agents as using simple AR(1) forecast
models in complex economic environments. RPE have also been central is a number of empirical
DSGE models, e.g. Slobodyan and Wouters (2012).

There has been considerable research done on heterogeneous expectations in macroeconomic
models. Early work includes Honkapohja and Mitra (2006), who consider the impact of expecta-
tions heterogeneity on equilibrium stability in a complete markets model, and apply their results to
policy considerations in a new Keynesian model. Branch and McGough (2009) develop a tractable
new Keynesian model with heterogeneous expectations; and Gasteiger (2018) and Anufriev, As-
senza, Hommes, and Massaro (2013) explore the policy ramifications of heterogeneous expecta-
tions in neo-classical economies. See Branch and McGough (2018) for a survey.

The paper is organized as follows. Section 2 develops with care the modeling environment
under rationality. Section 3 modifies the modeling environment to allow for local rationality, and

5See Branch, Evans, and McGough (2013) and Woodford (2018) for approaches that involve finite planning hori-
zons. See Hommes (2013) for a broad exposition on behavioral models of the macroeconomy.

6See also Evans and McGough (2020c) and Evans and McGough (2020a). Evans and McGough (2018) consider
the case in which exogenous variables are unobserved and use autoregressions or VARs as forecast models. Branch,
McGough, and Zhu (2021) combine non-observability of exogenous shocks with the presence of observable sunspot
processes to demonstrate the existence of stable RPE even in models that are determinate under RE.
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includes a detailed discussion of restricted perceptions equilibrium. Section 4 conducts an in-
depth examination of locally rational behavior in a partial equilibrium environment. Section 5
provides the calibration details and the methods used for our numerical work. Section 6 presents
our computational evidence for existence and stability of the model’s RPE, and discusses the results
of our calibration exercise. Section 7 concludes.

2 The rational model

To construct our concept of local rationality we use a standard heterogeneous agent environment
in the style of Aiyagari (1994), which we augment to include endogenous labor choice, as well
as aggregate shocks in the spirit of Krusell and Smith (1998). In this section we adopt the usual
behavioral assumption that agents are fully rational. In Section 3 we use this development as a
platform to introduce and motivate local rationality as an alternative behavioral assumption.

Heterogeneous agent models with rational agents are, by now, so commonplace in the literature
that their presentation is often high-level and brief, with emphasis placed only on the novelty under
examination. The reader typically is assumed sufficiently familiar with the many technical details
that they can either proceed with confidence of the model’s internal consistency or they can work
through the analysis themselves. As our work here re-imagines the agents’ behavioral primitives,
it is ground-level and necessarily detailed. To motivate our modified primitives and to facilitate
comparison to the benchmark case, we develop the well-known rational model in a manner that is
better aligned with the boundedly rational assumptions.7

2.1 The household problem

The household’s decision problem is recursive, and under rationally it can be naturally framed
using a time-invariant Bellman system; however, to motivate the behavioral primitives adopted in
the boundedly rational case, it is more natural to characterize agent behavior sequentially via their
first-order conditions.

Time is discrete. There is a unit mass of agents who are identical up to idiosyncratic wage
shocks. Each agent is endowed with one unit of labor/leisure per period and measures their flow
utility as a function of their current consumption c and leisure l with utility function u(c, l). Dif-
ferent agents have different efficiency units of labor per hour worked. In return for supplying
labor, each agent receives a wage that can be separated into two parts: an aggregate component w
that is the same across all agents; and an idiosyncratic efficiency component ε that is independent
and identically distributed across all agents. We assume that {ε} is a Markov process with time-
invariant transition function Π. An agent cannot fully insure against this idiosyncratic risk, but

7See Krusell and Smith (1998) for an early, detailed development, and Krueger, Mitman, and Perri (2016) for more
details.
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in each period they can trade one-period claims to capital up to an exogenously given borrowing
constraint a, for net return r. Goods and factor markets are assumed competitive.

Given a stochastic process for factor prices, {rt ,wt}, the decision problem for an agent can be
summarized as follows. In period t, a given agent finds themselves holding claims a, experiencing
idiosyncratic efficiency ε , and facing current prices rt and wt . Additionally, the agent has at their
disposal a host of additional data and information useful for forming forecasts and making deci-
sions.8 We will use the subscript t to denote dependence on this time t information set. The agent
proceeds to make period t decisions by choosing values ct (a,ε), lt (a,ε) and at (a,ε) to satisfy

uc (ct (a,ε) , lt (a,ε))≥ βEt

[∫
λt+1(at (a,ε) ,ε ′)Π(dε

′|ε)
]

(1)

and at (a,ε)≥ a, with c.s.

ul (ct (a,ε) , lt (a,ε)) = uc (ct (a,ε) , lt (a,ε))wt (2)

at (a,ε) = (1+ rt)a+wt · ε · (1− lt (a,ε))− ct (a,ε) (3)

λt (a,ε) = (1+ rt)uc (ct (a,ε) , lt (a,ε)) . (4)

Here λt is the period t shadow price of an additional unit of claims held from period t−1 to period
t. The inequality pair (1) is the standard Euler condition and balances the agent’s inter-temporal
trade-off between consumption and savings. Equation (2) balances their intra-temporal trade-off
between labor and leisure.

The right-hand side of equation (1) is the period t forecast of the period t +1 shadow price of
savings. This forecast is taken over both idioysncratic risk faced by the agent, which is captured
through the integral over next period’s productivity ε ′, as well as aggregate risk, which is summa-
rized by the dependence of λt+1 on the period t + 1 information set. The expectations operator,
Et , represents expectations over the aggregate shocks conditional on the time t information set. To
emphasize per-period decision making, which will be useful when connecting the rational case to
our locally rational implementation below, let λe

t (a
′,ε) represent the agent’s period t forecast of

their period t +1 shadow price given their savings for next period and current productivity. In the
rational case under examination here

λ
e
t (a
′,ε) = Et

[∫
λt+1(a′,ε ′)Π(dε

′|ε)
]
,

and the period t Euler equation can be written more succinctly as

uc (ct (a,ε) , lt (a,ε))≥ βλ
e
t (at(a,ε),ε) and at (a,ε)≥ a, with c.s. (5)

In the rational model, one of the elements of the time t information set is the current joint
distribution, µt , over agent states (a,ε). When making forecasts, the agents must both know this

8In the rational model, for example, the agent must know the distribution of shocks and claims across agents and
understand its evolution over time.
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distribution as well as its transition dynamics. In equilibrium, these transition dynamics must be
consistent with the decision rules of agents, at(a,ε), as well as the transition density Π of the
idiosyncratic shocks. By construction, the dynamics of µt and the optimal decisions rules of the
agents, at(a,ε), must be jointly determined in equilibrium.

2.2 The firm problem

The representative firm rents capital kt at real rental rate rt + δ , hires effective labor nt at real
wage wt , and produces output under perfect competition using CRTS technology θ f (k,n), where
δ is the capital depreciation rate. We take {θt} to be a stationary process that affects total factor
productivity, with dynamics given by θt+1 = vtθ

ρ

t , |ρ| < 1, and {vt} is iid having log-normal
distribution. There are no capital installation costs. Profit maximizing behavior by the firm implies
factors earn their marginal products:

wt = θt fn(kt ,nt) and rt +δ = θt fk(kt ,nt) . (6)

2.3 Dynamic recursive equilibrium

We define a dynamic recursive equilibrium as a collection of stochastic processes consisting of
agent decision rules {ct , lt ,at}, agent forecasts {λe

t }, factor prices {rt ,wt}, and the joint distribution
of individual states {µt}, satisfying

• Agent optimality: For all t and (a,ε), the choices ct (a,ε) , lt (a,ε), and at (a,ε) satisfy (2),
(3), and (5) given forecasts λe

t and current prices rt ,wt .

• Agent rationality: For all t and (a′,ε)

λ
e
t (a
′,ε) = Et

[∫
λt+1(a′,ε ′)Π(dε

′|ε)
]

(7)

where λt(a,ε) is the period t shadow price given by (4).

• Market clearing: kt =
∫

a ·µt (da,dε) and nt =
∫

(1− lt (a,ε)) ·µt (da,dε) .

• Firm optimality: Prices rt and wt satisfy (6).

• State dynamics: µt+1 evolves consistent with at and Π, and θt+1 = νt+1θ
ρ

t .

Observe that, given any initial aggregate state (µ0,θ0), a dynamic recursive equilibrium, together
with a sequence of innovation draws {vt}, uniquely determines a time path of agent-state distribu-
tions {µt} and prices {rt ,wt}. Most of the components in the definition of the dynamic recursive
equilibrium are standard in the literature. The one exception to this is that we have explicitly
decoupled agent optimality and rationality. When we extend our analysis to boundedly rational
agents we will only need to change the forecasting rules used by agents.
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2.4 The representative agent model: dynamic equilibrium

We will want to compare the dynamics of our model to those obtained under the representative
agent (RA) analog, and to facilitate this comparison we highlight the natural sense in which the
RA model is a special case of the HA model under examination.

Consider the model developed above, but with the cross-sectional variation in productivity
shut down: εt = 1 for all agents. Assuming also that agents are initially endowed with the same
wealth holdings, per period consumption/savings and labor/leisure decisions will be the same
across agents, thus eliminating the need to track agent-state distributions and the dependence of
policies on individual states. Equations (1) – (4) and (6) still hold, and by identifying agent-specific
variables with corresponding aggregates, the model’s dynamics are quite simple to characterize:

• Agent optimality: Aggregate wealth at , consumption ct , and leisure lt satisfy

uc (ct , lt)≥ βλ
e
t , at ≥ a, with c.s.,

ul (ct , lt) = uc (ct , lt)wt , and at = (1+ rt)a+wt · (1− lt)− ct ,

given forecasts λe
t .

• Agent rationality: λ e
t = Et ((1+ rt+1)uc(ct+1, lt+1)).

• Market clearing: kt = at−1 and nt = 1− lt .

• Firm optimality: Prices rt and wt satisfy (6).

• State dynamics: Capital evolves as kt+1 = θt f (kt ,nt)+(1−δ )kt− ct .

2.5 Stationary recursive equilibrium

The need to track the dynamics of the infinite dimensional aggregate state is a serious impediment,
both to the modeler and to the model’s agents. The suppression of aggregate risk, together with
a focus on a stationary equilibrium, i.e. a steady-state distribution of agent-specific states, greatly
simplifies matters. Because this simplification will feature prominently in our implementation of
local rationality, we discuss it in detail here.

Setting θ = v = 1 and assuming the distribution of agent-states is constant, the time subscript
may be dropped: no information other than the agent-state is needed to make decisions. Using
over-bars to distinguish this special case, we define a stationary recursive equilibrium (SRE) as a
tuple

(
c̄, l̄, ā, λ̄ e, r̄, w̄, µ̄

)
satisfying

• Agent optimality: For all (a,ε), the choices c̄(a,ε), l̄ (a,ε), and ā(a,ε) satisfy (2), (3) and
(5) given λ̄ e.
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• Agent rationality: For all (a′,ε),

λ̄
e(a′,ε) =

∫
λ̄
(
a′,ε ′

)
Π(ε,dε

′), (8)

where λ̄ (a,ε) = (1+ r̄)uc
(
c̄(a,ε), l̄(a,ε)

)
.

• Market clearing: k̄ =
∫

ā(a,ε) · µ̄ (da,dε) and n̄ =
∫ (

1− l̄ (a,ε)
)
· µ̄ (da,dε) .

• Firm optimality: Prices r̄ and w̄ satisfy (6) given k̄ and n̄.

• State dynamics: µ̄ is stationary under ā and Π.

3 Local rationality

The difficulty faced both by the modeler and by the model’s agents, when attempting to determine,
or even approximate, fully rational decision making, lies in the fact that policy rules and, hence
the law of motion, depend on the distribution µ , which is a high dimensional object. Multiple
approaches have been used in the literature to approximate the REE of these models. Broadly
speaking they can be categorized into two types of approaches. The first type uses projection
methods along the lines of Krusell and Smith (1998) to summarize the distribution with a finite
set of moments. The exact method can vary, but generally faces the problem that each additional
moment adds an additional dimension to the state space. Thus, the curse of dimensionality is
quickly faced. The second approach, first introduced by Reiter (2009), instead linearizes policy
rules around the REE.

Both of the approaches are appropriately viewed as addressing the modeler’s problem, the
assumption being that the model’s agents are fully rational, whereas the modeler must rely on
numerical methods to approximate their behavior. The supposition of fully rational agents is a
common and natural benchmark; however, it strains the model’s realism to imbue its agents with
such sophistication. Said differently, the assumption of agent rationality in this model conflicts
with the cognitive consistency principle, which has been emphasized by Evans and Honkapohja,
and asserts that a model’s agents should not be much more sophisticated, nor much less sophis-
ticated, than the agents’ modeler. In this section we develop a bounded rationality approach that
navigates this cognitive conflict while also mitigating technical challenges faced by the modeler.
Our implementation of bounded rationality, which borrows from both the RE literature mentioned
above, and from the representative agent learning literature, is termed local rationality.

3.1 Locally rational agents

We begin with a description of the behavior of individual agents and then discuss equilibrium
dynamics in Section 3.2. In an REE, the model’s agents know not only the current distribution
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of agent-states but also its law of motion and the associated effect on prices; further, they know
how to use this knowledge to fully solve their decision problem. The RE model is silent on how
agents came to acquire this knowledge and these skills. In contrast, we adopt the agent-level
learning view, advanced by Evans and McGough (2020b), that agents may not have access to the
full aggregate state, that they forecast aggregates using linear models which are updated over time
as new data become available, and that they make decisions based on perceived tradeoffs that are
informed by these forecasts.

In period t, a given agent is identified by their state (a,ε), and by their beliefs, ψ , which com-
prise the coefficients of the forecast model used to form expectations of next period’s shadow price.
Together with all other agents, they are assumed to observe some common vector of aggregates
Xt ∈ Rn, and they condition their forecasts, λ̂e

t , on these aggregates. Given current prices rt and
wt , they then use this forecast rule to determine their period t decisions ĉt(a,ε,ψ), l̂t(a,ε,ψ) and
ât(a,ε,ψ), which satisfy the following system of equations:

uc
(
ĉt(a,ε,ψ), l̂t(a,ε,ψ)

)
≥ βλ̂

e
t (ât(a,ε,ψ),ε,ψ) and ât(a,ε,ψ)≥ a, with c.s. (9)

ul
(
ĉt(a,ε,ψ), l̂t(a,ε,ψ)

)
= uc

(
ĉt(a,ε,ψ), l̂t(a,ε,ψ)

)
wt (10)

ât(a,ε,ψ) = (1+ rt)a+wt · ε ·
(
1− l̂t(a,ε,ψ)

)
− ĉt(a,ε,ψ). (11)

Importantly, equations (9) – (11) are taken as behavioral primitives: they are imposed assumptions
on the behavior households. Equation (9) balances the agent’s inter-temporal consumption/savings
trade off, and equation (10) balances their intra-temporal labor/leisure trade off. Equation (11) is
the agent’s budget constraint.

It remains to specify how the expectation λ̂e
t is formed. In a heterogeneous agent economy,

agents must learn how to forecast optimally in response to both idiosyncratic and aggregate shocks.
In this paper we focus on learning how to forecast in the presence of aggregate shocks: our local
rationality assumption is that, absent aggregate risk, an agent knows how to form forecasts op-
timally; in the presence of aggregate risk, the agent forms expectations relative to the rational
forecasts they would have made in a stationary environment. Our reasons for assuming this are
two fold. First, idiosyncratic shocks are larger and, thus, agents would learn how to optimally
forecast in response to idiosyncratic shocks faster. Second, this implementation provides a clean
comparison to the rational model as most solution techniques approximate decisions rules around
a stationary recursive equilibrium. By having the benchmark model be that same stationary recur-
sive equilibrium, we can ensure the differences in behavior under local rationality are driven by
aggregate shocks.

Operationally, we assume that, to form forecasts, agents use the following forecast model, or
perceived law of motion (PLM):

log λ̂t = log λ̄t + 〈ψ,Xt−1〉 , (12)

where ψ ∈ Rn is a vector of beliefs and Xt ∈ Rn is a vector of observable aggregates, and 〈·, ·〉 is
the standard inner product on Rn. Using this PLM, the agent forms expectations as

λ̂
e
t (a
′,ε,ψ) = λ̄

e (a′,ε) · exp(〈ψ,Xt〉) , (13)
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where λ̄e is as defined in (8).9 In this way, 〈ψ,Xt〉 represents the agent’s forecasted log deviation
of their shadow-price from their stationary forecast, λ̄e.

Equation (13) is the key behavioral primitive of our model, and reflects the cognitive consis-
tency principle mentioned above. Our agents are assumed able to behave optimally in absence of
aggregate risk: in effect, we are assuming that agents have already learned how to behave opti-
mally in the absence of aggregate uncertainty.10 The introduction of aggregate uncertainty greatly
increases the complexity of the agent’s problem, and here we incorporate bounded rationality:
agents are not assumed to know how to forecast the evolution of aggregates optimally, nor how to
solve their dynamic decision problem in the face of aggregate risk. Instead they use linear models
to form forecasts and they make decisions based on the trade-offs these forecasts impart.

An agent’s beliefs evolve as new data are observed, and here we follow the adaptive learning
literature’s emphasis on recursive least squares algorithms. These algorithms take new estimates
(in our case, beliefs) to be a combination of prior estimates and the forecast error adjusted to
account for the relative magnitudes and variations of the regressors. The weight placed on the
adjusted forecast error is called the gain – denoted by gt – and may be taken as decreasing or
constant over time.

To update their beliefs, an agent with state (a,ε) and beliefs ψ regresses log deviations of the
realized shadow price

λ̂t(a,ε,ψ) = (1+ rt)uc
(
ĉt(a,ε,ψ), l̂t(a,ε,ψ)

)
(14)

from its stationary counterpart λ̄ (a,ε) on to the previous period’s observables Xt−1. Letting Rt
measure the estimate of the second-moments of X , the recursive formulation of the updating rule
for beliefs is given by

ψ̂t (a,ε,ψ) = ψ +gt ·R−1
t+1Xt−1

(
log
(

λ̂t(a,ε,ψ)/λ̄ (a,ε)
)
−〈ψ,Xt−1〉

)
, (15)

where Rt+1 = Rt +gt · (Xt−1⊗Xt−1−Rt). Note that the term R−1
t+1 depends only on aggregates and

so may be taken as common across agents.

Some of our results below feature algorithms with decreasing gains and so we retain the more
general notation; however, local rationality is most naturally modeled by assuming agents use
constant-gain learning (CGL), and this warrants further comment. The decreasing gain gt = 1/t
results in ordinary least squares: see Ch. 2 of Evans and Honkapohja (2001); further, almost sure
convergence to the RPE or REE in general requires decreasing gains in which gt → 0 at a suitable
rate like t−1. In applied work it is common to assumed the gain is a (small) constant: gt = g∈ (0,1).

9An alternative forecasting rule decomposes ψ into two components, one used to forecast the future aggregate
state and the other used to specify the relationship between the aggregate state and the shadow price relative to the
stationary case. Forecasting the shadow price then requires computing the product of these components. We opt for
the simpler method of estimating this product directly.

10It can be shown, in a stationary environment with only idiosyncratic risk, that if agents are provided forecast-
ing models for λ̄ that depend on higher-order terms the economy’s asymptotic behavior will approximate the REE
arbitrarily well.
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CGL algorithms discount older data at a geometric rate 1−g, and, in stable systems, result in weak
convergence to a distribution near the RPE or REE when the gain is small enough.

Several reasons for using constant gain algorithms have been advanced in the literature: see
Evans, Evans, and McGough (2021b) for a discussion. Our preference for CGL reflects the concern
agents might have about model misspecification. Our agents use simple linear forecast models, but
also recognize that these models may not capture the full complexity of the decision-making envi-
ronments. To account for this, the agents reason that more recent data might be more informative
about the current forecasting problem, and thus they discount past data. See Williams (2019) for
more on the use of CGL as a robust procedure in the face of model misspecification.

Before turning to equilibrium dynamics it is worth reflecting on the simple nature of our agent’s
behavior. They enter the period with individual states (a,ε) and individual beliefs ψ . They observe
the aggregate Xt and prices (rt ,wt), use their beliefs ψ to make forecasts which results in choices
ĉt , l̂t , and ât for each agent. They go to work, get their wage, go to their broker to trade claims,
and stop by the store on the way home to collect their consumables. Finally, they measure their
realized shadow price, λ̂t , and update their beliefs. Now they’re ready to relax, no more decisions
or actions being needed until tomorrow.

3.2 Locally rational dynamics

Given SRE behavior λ̄ , agent-specific states and beliefs (a,ε,ψ), and observable aggregates Xt , the
conditions (9) - (11) determine agents’ decision schedules in terms of prices (rt ,wt). The realized
values of prices and other endogenous aggregates are determined by market clearing, i.e. tempo-
rary equilibrium. Mechanically, this determination requires tracking the evolving distribution of
agent-specific states and agent-specific beliefs.

Let µt be the contemporaneous distribution of agent-states and beliefs. Then temporary equi-
librium imposes that rt = θt fk (kt ,nt)−δ and wt = θt fn (kt ,nt), where kt and nt are determined by
the market clearing conditions

kt =
∫

a ·µt (da,dε,dψ) and nt =
∫ (

1− l̂t (a,ε,ψ)
)

µt (da,dε,dψ) , (16)

and θt is the realized TFP shock. The nt in (16) depends on the policy rules l̂t(a,ε,ψ), which,
in turn, depend implicitly on current factor prices (rt ,wt). All must be jointly determined in the
temporary equilibrium as solutions to a system of non-linear equations. Note that, just as in the
RE model, prices are determined by the distribution µt and the productivity shock. The difference
is that here the distribution µt is over states (a,ε) and beliefs ψ , which evolves consistent with ât
and ψ̂t .

Denote by Γ the map that takes the full aggregate state ξt = (µt ,θt ,Rt ,Xt−1) to the aggregate
observables Xt , i.e. Xt =Γ(ξt). The dynamics of the economy, which we refer to as locally rational
dynamics (LR-dynamics), are given in recursive causal ordering as follows:
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1. Xt = Γ(ξt)

2. Find (rt ,wt ,kt ,nt) that solve rt = θt fk (kt ,nt)−δ and wt = θt fn (kt ,nt) and (16).

3. Rt+1 = Rt +gt · (Xt−1⊗Xt−1−Rt)

4. θt+1 = vt+1θ
ρ

t

5. µt+1 evolves consistent with ât and ψ̂t

The recursive causality of this dynamic system simplifies the computational burden faced by
the modeler: it is no longer necessary to search for (an approximation of) a distributional transi-
tion dynamic that is consistent with rational expectations on the part of agents. This simplification
comes at a cost: resolution of the temporary equilibrium (item 2) and approximation of the distri-
butional dynamics (item 5) require analysis of an agent-specific state-space that has been expanded
to include beliefs. Under rationality, beliefs are homogeneous among agents and consistent with
the equilibrium dynamics: lovely in terms of parsimony but difficult to compute. Under local
rationality, beliefs vary across agents and are updated recursively: less parsimonious but more
computationally tractable.

A final observation: as in the rational case, given initial aggregate state ξ0 = (µ0,θ0,R0,X -1),
the LR-dynamics, together with a sequence of innovation draws {vt}, uniquely determines a time
path of aggregate states {ξt}, and thus of agent-state distributions {µt}, as well as a time path of
prices {rt ,wt}.

3.3 Restricted perceptions equilibria

In a rational expectations equilibrium, agents make forecasts optimally conditional on the econ-
omy’s data generating process (DGP). Importantly, the DGP is an endogenous object: it is de-
termined by the actions, and hence the forecasts, of agents. A restricted perceptions equilibrium
(RPE) is the analogous solution concept under the additional restriction that agents are constrained
in their choice of forecast models. Each agent is assumed to choose a forecast model from a pre-
determined class. In an RPE, agents make forecasts optimally conditional on the economy’s DGP
and conditional on their restricted class of forecast models. As with an REE, the data generating
process arising from a RPE is an endogenous object: the optimality of a given agent’s forecast
model is conditional on the forecast models used by other agents.

A restricted perceptions equilibrium identifies a natural long-run solution concept in models
with learning agents. In this case, the class of forecast models under consideration is typically
taken as same for all agents; and the forecast models themselves are assumed linear in parameters,
arising from the learning agents’ PLMs. If the economy is stable under adaptive learning then its
long run behavior, with a decreasing gain learning algorithm, is well-captured by the associated
RPE.

Recall that, as a learning agent, his PLM is given by (12), i.e. log λ̂t = log λ̄t + 〈ψ,Xt−1〉 ,
where the vector ψ is naturally interpreted as the agent’s beliefs. To define a restricted perceptions
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equilibrium under local rationality, we require that agents restrict attention to forecast models of
the form (12). Conceptually, in an RPE, each agent’s beliefs are fixed at a forecast model that
is optimal in the sense that, conditional on the behaviors of all other agents (and thus on the
economy’s aggregate dynamics), it minimizes long-run mean-square forecast errors.

Formally (and computationally) the definition of an RPE in our environment begins with the
behavior of a given agent in isolation. Thus imagine the agent holding beliefs ψ fixed for all
time, and facing an economic environment summarized by the exogenous (to the agent) processes
Ξt = (Xt ,rt ,wt ,εt). Equations (9)-(11), together with

λ̂t/λ̄t = (1+ rt)uc
(
ĉt , l̂t

)
/λ̄ (ât−1,εt),

induce a stochastic dynamic system in ηt(ψ) =
(

log
(

λ̂t/λ̄t

)
,Xt−1

)
. Under appropriate condi-

tions this system has a stable ergodic distribution νΞ(ψ), thus ηt(ψ)
D→ νΞ(ψ). We define TΞ(ψ)

to be the projection of log
(

λ̂t/λ̄t

)
onto the span of Xt−1 using the distribution νΞ(ψ). Importantly,

the distribution νΞ(ψ), and hence the map TΞ, depend on the exogenous processes, which is the
reason for the subscript Ξ.

The map TΞ, which takes beliefs to projected values, is defined for a given agent, taking Ξ as
exogenous. To extend this map to the general equilibrium environment, define a beliefs profile Ψ

as an assignment of beliefs to each agent conditional on their initial state. Now note that a beliefs
profile, together with the exogenous (to the economy) aggregate and idiosyncratic productivity
processes, determines the time-path of the economy, and thus the stochastic process Ξt(Ψ) =
(Xt ,rt ,wt ,εt). Furthermore, because a given agent is small, their beliefs do not impact Ξt(Ψ), and
so we may define a map TΞ(Ψ), just as above. This construction provides the following definition:

Definition 1. A beliefs profile Ψ is a restricted perceptions equilibrium if each agent’s beliefs
vector ψ , as determined by the profile Ψ, is a fixed point of TΞ(Ψ).

This definition of an RPE does not a-priori impose that all agents hold the same beliefs; how-
ever, homogeneity is implied in our model, at least for small shocks:

Proposition 1. If the supports of the aggregate shocks are sufficiently small then agents hold the
same beliefs in any restricted perceptions equilibrium that is local to the stationary recursive equi-
librium.

All proofs are in the Appendix. This proposition simplifies considerably our computational
work. By appealing to homogeneity of beliefs, when computing an RPE we may replace the
beliefs profile Ψ with a beliefs vector ψ , thus greatly reducing the dimension of the problem: see
Section 6.1 for implementation details.

It is important to emphasize that the deck here is stacked in favor of homogeneity: after all,
we assumed agents use forecast models from the same restricted class. This assumption is not nec-
essary: indeed much of the literature on heterogeneous expectations involves agents-types being
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distinguished by the forecast models they use, and the equilibrium concept adopted in these studies
is often some version of an RPE.11

In Section 4, which considers the behavior of a locally rational agent in partial equilibrium, we
demonstrate existence and uniqueness of an RPE. And while, for our general equilibrium model, no
analytic results are reachable with current technology, it is expected (based on a wealth of findings
in the learning literature) that for appropriate aggregate observables there is a unique RPE; that
for appropriately decreasing gains it is (locally) stable under adaptive learning; and that for small
constant gains, agents’ beliefs converge weakly to an ergodic distribution very near it. Each of
these properties is demonstrated numerically for our model in Section 6.

Finally, it warrants returning to our view that benchmark behavior should be taken as CGL.
The notion of optimality used to identify an RPE is predicated on the idea that agents will hold
their beliefs constant over time; however, due to model misspecification, it may be advantageous
for a given agent to allow their beliefs to vary over time. This line of reasoning is consistent with
the views espoused by Williams (2018), and suggests that, in the environment under consideration,
constant gain learning may be superior to learning algorithms that induce almost sure convergence
to the RPE. In fact, we will see that a constant gain learning algorithm will allow our model to
better fit moments of the data.

3.4 Special cases

The behavior of locally rational agents has two interesting limits. The first natural limit is when
the size of the aggregate shocks approaches zero. It’s clear from the definition that in the absence
of aggregate shocks the model’s SRE is an RPE with ψ∗ = 0. With small aggregate shocks, the
behavior of a locally rational equilibrium, therefore, inherits properties from the stationary recur-
sive equilibrium such as the wealth distribution and level of precautionary savings. This allows us
to isolate how agents learn in the presence of aggregate shocks.

In the other direction, we can take the limit as the size of idiosyncratic shocks ε approaches
zero, with the initial distribution µ being a point mass on homogeneous initial conditions for wealth
and beliefs. In this limit, the distribution of agents will remain a point mass throughout time, and
we recover RA behavior similar to shadow price learning of Evans and McGough (2020b).

Because we will analyze local rationality in the RA model for comparison with the HA case,
we elaborate here on some details. In a representative agent environment, locally rational agents,
in effect, know the non-stochastic steady-state value of log λ̄ , and scale it in response to aggregate
conditions, just as in the HA case: logλ e

t = 〈ψt ,Xt〉 · log λ̄ , where ψt capture common beliefs.
Analogs to (9) – (11) are used to form decision schedules, and competitive factor prices and market
clearing result in realized values for the economy’s aggregates. Finally, agent’s beliefs are then
updated using (15), just as in the HA case.

11See Branch and McGough (2018) for more on expectations heterogeneity. In Appendix D, we demonstrate how
to incorporate heterogeneous forecasting rules by allowing for types of agents who differ in the aggregates Xt that they
condition on.

17



4 Local rationality in partial equilibrium

To explore the mechanisms underlying local rationality, we consider the behavior of an LR agent
in isolation, i.e. absent general equilibrium effects. Additionally, we abstract from labor/leisure
considerations and assume the agent supplies a unit of labor inelastically, with the aggregate com-
ponent of wage set to one and idiosyncratic productivity εt taken to be iid and normally distributed
about one.

We assume that the agent has constant absolute risk aversion (CARA) preferences over per-
period consumption: u(c) = −γ−1 exp(−γc), and receives net return on their savings given by rt ,
which is taken as a stationary AR(1) process in logs:

rt+1 = (1+ r̄)1−ρ(1+ rt)
ρ exp(σηηt+1)−1, (17)

where ηt is an iid random variable with compact support, mean zero, and standard deviation one.
Finally, we assume that agent’s face a natural borrowing limit in the form of a transversality con-
dition on wealth. The CARA utility form, together with the natural borrowing limit and the as-
sumption that labor income is normally distributed and iid, allows for a closed form solution to
the agent’s stationary problem, i.e. when returns are held constant at rt = r̄, and thus lends trans-
parency to locally rational behavior. On the other hand, the agent’s savings, in this case, is a unit
root process; to induce stationarity, we assume the agent has a probability φ of dying at the end
of every period, leading to an effective discount rate of βφ . If the agent dies we assume they are
replaced with a new agent with zero assets, which will ensure a stationary distribution of assets.

As in Section 2.1, rational decisions can be written recursively as at(a,ε),ct(a,ε) and λt(a,ε).
In the stationary case, the agent’s decisions rules are independent of t, and we will denote them
as ā(a,ε), c̄(a,ε), and λ̄ (a,ε), just as in Section 2.5. The results for the stationary case are well-
known, see for example Acharya and Dogra (2020), and summarized in the following Proposition
2.

Proposition 2. The optimal consumption and savings behavior of the agent absent aggregate risk
is linear in cash in hand:

c̄(a,ε) =C̄ + µ̄ ((1+ r̄)a+ ε)

ā(a,ε) =(1− µ̄)((1+ r̄)a+ ε)− C̄

with µ̄ = r̄
1+r̄ and C̄ =

− 1
γ

log(βφ(1+r̄))−µ̄− 1
2 γ µ̄2σ2

y
r̄ .

For completeness we provide a proof of this proposition in the Appendix. Proposition 2 tells
us that rational behavior absent aggregate risk follows a simple linear structure. In fact, as (1−
µ̄)(1+ r̄) = 1 we can conclude that savings follow a random walk with drift. Moreover, as the
shadow value of savings is log linear in consumption,

log λ̄ (a,ε) = log(1+ r̄)− γ c̄(a,ε),
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we can also conclude that the log shadow price is linear in cash in hand.

For the remainder of this section we will assume that the model is calibrated such that there is
no drift: (1+ r̄)C̄ = 1. When displaying plots we will assume the following quarterly calibration.
We set the discount fractor β = 0.99, the risk aversion parameter γ = 2, and the standard deviation
of the income shock to be σε = 0.25. We assume a 0.5% probability of dying every period so
φ = 0.995. Finally, we assume that a one standard deviation shock to returns is 25 basis points
with an auto-correlation of ρ = 0.85. None of our results are sensitive to these parameters values.

4.1 Local rationality

The behavior of the rational agent is contingent on knowing the stochastic process for rt and know-
ing how to respond optimally to its realizations. Under local rationality, the agent is assumed to
know how to behave optimally absent aggregate risk, but they must learn how to respond to varia-
tion in returns. Operationally this means the agent knows the functions c̄, ā, and λ̄ , and forecasts
the future shadow value of savings using the PLM

log λ̂t = log λ̄t +ψ log((1+ rt−1)/(1+ r̄)) , (18)

which is the analog to (12), and thus forms expectations via

λ̂
e
t (a
′,ε,ψ) = λ̄

e(a′,ε) · exp(ψ log((1+ rt)/(1+ r̄))) ,

where λ̄ e(a′,ε) =
∫

λ̄ (a′,ε ′)dPr(ε ′), and dPr is the normal density.12

Conditional on this forecast, the equations characterizing the behavior of the LR agent are
analogous to equations (9), (11), and (14), and given by

exp(−γ ĉt(a,ε,ψ)) = βφλ̂
e
t (ât(a,ε,ψ),ε,ψ)

ât(a,ε,ψ) = (1+ rt)a+ y− ĉt(a,ε,ψ)

λ̂t(a,ε,ψ) = (1+ rt)exp(−γ ĉt(a,ε,ψ)) .

Finally, as before, we assume that agents beliefs are updated using the following learning algo-
rithm:

Rt+1 = Rt +gt

(
log((1+ rt−1)/(1+ r̄))2−Rt

)
ψ̂t(a,ε,ψ) = ψ +gtR−1

t+1 log
(

1+ rt−1

1+ r̄

)(
log

(
λ̂t(a,ε,ψ)

λ̄ (a,ε)

)
−ψ log

(
1+ rt−1

1+ r̄

))
,

where Rt+1 is the agent’s estimate for the covariance of the log((1+ rt−1)/(1+ r̄)).

12The dependence of λ̄ e on ε is not needed here since the process εt is iid; however, we retain it for notational
symmetry.
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4.2 First-Order Analysis

A standard tool for understanding the behavior of heterogenous agent models in the presence of
aggregate risk is to linearize around the no aggregate risk policy rules, and this same technique
provides useful insights when applied to the dynamics characterizing our locally rational agent in
this section. We will proceed in this manner by taking a first order expansion of the policy rules
with respect to the level of interest rate risk ση . As notation, we’ll use O(σ2

η) to denote errors that
arise from a first order approximation and therefore scale with σ2

η . We will use O(ση) to denote
errors that arise from the zeroth order approximation and therefore scale with ση . Our first result
concerns the behavior of the rational agent.

Proposition 3 (Rational behavior). There exists constants ψ0 > 0,ψa < 0, and ψε such that

ct (a,ε) = ĉt
(
a,ε,ψRE(a,ε)

)
+O(σ2

η)

where
ψ

RE(a,ε) = ψ0 +ψaa+ψε(ε−1) (19)

Proposition 3 tells us that, for any level of the idiosyncratic state, there exists beliefs such that
the locally rational agent would behave in the same manner as the rational agent. To understand
why beliefs take the form in (19) consider the response of a rational agent to an increase in the
returns to wealth. The consumption response of the rational agent depends on the present value
budget constraint where the expected present value of consumption must equal the human wealth
of the agent: their financial wealth plus the expected present value of labor income. When the
agent has no financial wealth an increase in returns decreases both the price of future consump-
tion and the present value of wage income leading to a decrease in consumption. As returns are
persistent, higher returns in the current period predict both higher future returns and lower future
consumption. This, in turn implies a higher expected marginal value of wealth, λ e

t , and thus is
rationalized by ψ0 > 0.

This logic is altered when the agent has some financial wealth in addition to their wage income.
An increase in returns to wealth increases the value of that wealth.13 Agents with higher financial
wealth have a correspondingly smaller decrease in consumption when returns increase. This is
captured by ψa < 0, which implies that agents with higher financial wealth will have a smaller
decrease in their expected future shadow price of wealth than agents with less financial wealth.

Next we turn to the behavior of the locally rational agent. Our first result concerns the existence
of an RPE as defined in Section 3.3.

Theorem 1. For ση small enough there exists a unique RPE associated with the PLM in (18) given
by

ψ
RPE =

ρ

1− ρ

1+r̄
+O(ση).

13This occurs directly via an increase in the present returns to wealth, and indirectly through a decrease in the price
of consumption

20



Figure 1: Best linear predictor of beliefs conditional on financial wealth

This theorem guarantees the existence and uniqueness of this RPE for small enough levels of
risk, and provides an approximation for that RPE with an error that scales linearly with the size of
the shock.14 Assuming the RPE is locally stable, we would expect the long run beliefs of agents
with a decreasing gain learning algorithm to converge this RPE. We verify this fact numerically
in the Appendix B.4. The nature of the PLM in (18) implies that unlike the rational beliefs in
Proposition 3, the RPE beliefs are independent of the agent’s idiosyncratic states. This is due to
agents drawing upon their entire experience when forming expectations. This includes periods
when they are financially well off as well as periods when they are in dire financial straights.

To illustrate this last point, in Figure 1 we plot both the RPE beliefs (blue) and rational beliefs
(black) as a function of financial wealth. In addition to those lines, we also plot the best linear
predictor of beliefs ψ as a function of wealth using the ergodic joint distribution of beliefs and
wealth constructed by simulating the behavior of the locally rational agent for various values of
the gain parameter. We note that the rational beliefs cross the RPE beliefs almost exactly at the
long run expected assets of the agent. This reflects that the agent learns on average to behave
optimally over time. However, the RPE beliefs are far away from the rational beliefs when the
agent either has very positive or very negative levels of financial wealth. Recall that agents with

14Solving for the RPE requires regressing the individual’s shadow price of savings on the interest rate. We use a first
order approximation to approximate the ergodic variance of both with an error which scales with O(σ3

η). Computing
the regression coefficient requires dividing by the variance of rt which leaves an error which scales as O(ση).
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Figure 2: Impulse response of consumption to a one standard deviation increase in returns condi-
tional on low wealth (left) and high wealth (right).

different levels of financial wealth experience the return shock differently. The RPE, being the
long run limit of the decreasing gain learning algorithm, averages over those experiences so when
agents are forecasting their future shadow price of savings they are remembering what it is like to
be poor even when they are currently rich.

A similar effect is true when the agent employs a constant gain learning algorithm. Studying
Figure 1 we see that for low values of the gain parameters the expectation of beliefs conditional
on financial wealth aligns almost exactly with the RPE value. This is because when the gain is
small enough, the agent is essentially averaging over their entire past experience. However, as
the gain parameter increases the conditional expectation of beliefs tilts towards the rational value.
With higher values of the gain parameter, the agent places more weight on recent experience when
learning to how to respond optimally to variation in returns. This results in the agent heavily
discounting past experiences when they had very different financial positions. Essentially, they
learn how to behave optimally in response to their current circumstances.

These differences in beliefs can result in different responses to changes in returns. In Figure
2 we plot impulse responses to a one-time one standard deviation increase in returns. The right-
hand side of the figure plots the percentage deviation of the consumption of high financial wealth
individuals as a result of this shock while the left-hand side plots the response of low financial
wealth individuals. In both cases consumption falls on impact with the shock, but it falls much
further for low wealth individuals since they are far more reliant their labor income and must pay
additional interest on their debt.15 Starting with the high wealth agents, we see that the fall in
consumption is less for rational agents than for their boundedly rational counterparts. Those with
the RPE beliefs have the greatest fall in consumption as they remember and put equal weight on
their experiences when they were poor. As we increase the gain parameter the impulse responses
approach rational behavior as the agent places more weight on recent experiences. The reverse

15Individual wealth in this model follows a near random walk. As a result, the time paths of the consumption IRFs
do not return to zero.
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is true for the low wealth individuals. In that case, the initial fall in consumption is larger for the
rational agent since those with RPE beliefs place equal weight on their experiences when they were
wealthy. This hysteresis effect will figure prominently in the behavior of the fully calibrated GE
model below.

5 Calibration and numerical methods

In this section we outline the baseline calibration as well as the numerical methods used to simulate
both the locally rational dynamics and the rational expectations equilibrium.

5.1 Functional forms and calibrations

We use the following standard calibration for the heterogeneous agent economy which follows
closely the calibration in Boppart, Krusell, and Mitman (2018). Agents are assumed to have a
utility function over consumption and leisure given by

u(c, l) =
1

1−σ

(
c1−σ −1

)
−η

(1− l)1+ϕ

1+ϕ
.

The production function is assumed to be Cobb-Douglass: f (k,n) = kαn1−α .

We begin by specifying the parameters common to both the rational expectations and bound-
edly rational model. We assume that the length of a period is one quarter and, therefore, assume a
long run capital to output ratio of 10.26 (see Den Haan, Judd, and Juillard (2010)). The parameter
α is chosen to be 0.36 to match the capital share of income. The depreciation rate, δ , is set to
match an annualized steady state real interest rate of 4% per year. Given the long run capital to
output ratio and production function this implies a value of δ = 0.025. We assume logarithmic
utility from consumption (σ = 1) as a benchmark value in the literature. We choose ϕ = 1 to
target a Frisch elasticity of 1. For the TFP process we use a standard parameterization, setting the
serial correlation coefficient to 0.95 and letting the standard deviation of the innovation be 0.007.
To capture idiosyncratic efficiency, we follow Krueger, Mitman, and Perri (2016) who estimate a
process for log earnings after taxes and transfers using the PSID. They estimated a quarterly per-
sistence for innovations, ρ , to be 0.9923 with a standard deviation, σε , of 0.0983. We use a finite
state approximation to this AR(1) process using Rouwenhorst’s method (see Kopecky and Suen
(2010)) with 11 grid points. We assume that households cannot borrow, a = 0.

The final two parameters β and η are internally calibrated and chosen to match moments for
the stationary distribution. We set β = 0.985 to ensure that the steady state capital to output ratio
matches the aforementioned target of 10.26. The parameter η is set to 7.8 to target an average
supply of hours by households to 1/3.

For learning models, it remains to specify the aggregate observables and to calibrate the
gain. Concerning the former, we follow the inspiration of Krusell and Smith (1998) and take
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X =
(
1, log

(
k/k̄
)
, log(θ)

)
. Assuming agents observe k̄ is innocuous: after all, they are regressing

on a constant. The assumption that agents observe aggregate capital and aggregate productivity,
while less natural, is also harmless – realized prices r and w contain the same information – and
the computational simplicity the assumption affords makes it standard in the literature: see, for
example, Krusell and Smith (1998), Eusepi and Preston (2011) and Branch and McGough (2011).

We set our benchmark gain at g = 0.035 to match our preferred moment, the ratio of consump-
tion to output volatility. Noting that the gain discounts past data at rate 1−g, this value implies a
half-life of approximately 5 years, based on quarterly measures, i.e. 0.96520 ≈ 0.5. Our value of g
is consistent with those used in the literature for calibration exercises and applied analysis.16

5.2 Wealth Inequality in the Model Economy

As argued by Krueger, Mitman, and Perri (2016) it is crucial, when using an HA model to study ag-
gregate fluctuations, to have a model-implied cross-sectional wealth distribution that is consistent
with the empirically observed concentrations, and it is especially relevant to match the the share of
the bottom 40% being close to zero. In table 1 we document how well the stationary distribution
of wealth in our model matches moments of the wealth distribution observed in the data. We focus
on the wealth held by the quintiles of the wealth distribution as well as those at the very top.

Data

% Share Held By PSID, 06 SCF, 07 Model

Q1 −0.90 −0.20 0.00
Q2 0.80 1.20 0.01
Q3 4.40 4.60 2.66
Q4 13.00 11.90 15.50
Q5 82.70 82.50 81.83
90-95 13.70 11.10 19.40
95-99 22.80 25.30 27.23
T1% 30.90 33.50 13.86

Table 1: Wealth distribution in the data and the model. The data columns are from table 6 of
Krueger, Mitman, and Perri (2016).

From the table we observe that the benchmark model fits the empirical wealth distribution
well and, specifically, is able to match the fact that the bottom 40% have essentially no wealth.
This is despite these being un-targeted moments. This is unsurprising as our model uses the same
idiosyncratic productivity process as Krueger, Mitman, and Perri (2016), and there they document
how that highly persistent process is key for generating enough dispersion in wealth. The only

16For example, using quarterly data on US aggregates, Milani (2007) estimates a gain of 0.018; in their influential
paper on monetary policy, Orphanides and Williams (2003) set g = 0.05; Branch and Evans (2006b) find that for
quarterly GDP and inflation data, a range of 0.02−0.05 works well for both forecasting and for matching the Survey
of Professional Forecasters; and Eusepi and Preston (2011) use an optimizing procedure to select a gain of 0.0029.
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problematic moment for the model is the very top of the wealth distribution. In the data the top
1% of the wealth holders account for over 30% of overall net worth whereas the corresponding
moment in the model is only 14%.

5.3 Numerical methods

For both the locally rational model as well as the rational expectations model, the first step is to
approximate the stationary equilibrium. We carry this out by first solving the consumer’s problem,
given fixed prices, using the endogenous grid method of Carroll (2006). The decision rules for each
productivity level are approximated using cubic interpolation with 150 non-linearly spaced grid
points. With the household decisions in hand, the stationary distribution of assets and productivities
are approximated using a histogram over income and assets defined on a finer grid with 5000 points
per productivity level. From the household policy rules, we construct a transition matrix between
individual states and compute the associated invariant distribution.

To approximate the rational expectations equilibrium, we compute an impulse response to
a one-time unexpected shock to productivity assuming perfect foresight. Boppart, Krusell, and
Mitman (2018) demonstrated that, for a small enough shock, dividing the impulse response by the
size of the shock constructs a numeric derivative which is isomorphic to linearizing the model’s
dynamics with respect the productivity shock. We compute this impulse response by assuming that
the economy is initially at the long run steady state. We then assume that log TFP receives a one
time increase in productivity that mean reverts back to steady state level at rate ρ . By assuming
that after T = 350 periods the economy has returned to the steady state, we can solve for the path
of the capital to labor ratio17 that represents the perfect foresight equilibrium.

Once the impulse response has been recovered it is possible to simulate the time series of
aggregates as follows. For a given aggregate variable, z, let {zθ ,t} be the impulse response of that
variable to a one time, unanticipated productivity shock normalized such that zθ ,tσν is the response
to a one standard deviation shock. The time series of zt generated by a sequence of shocks νt is
then constructed by aggregating the effects of all past shocks:

zt =
T

∑
k=0

zθ ,kνt−k.

To simulate an economy with locally rational agents we need, at any given period, the joint
distribution of assets, productivities, and beliefs. We approximate this distribution, µt , each period
using 100,000 agents. Every period, given the current productivity level, θt , and distribution of
agent characteristics, µt , we solve for the temporary equilibrium and update the aggregate state
based on the decision rules ât and ψ̂t . See Appendix C for full details.

17For a given path of TFP, the capital/labor ratio pins down the path of prices that are inputs for the agents problem.
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6 Results

In this section, we study the behavior of the calibrated economy populated by agents who are
locally rational. We use numerical methods to show the existence of an RPE and demonstrate
that the RPE is stable under learning with decreasing gain. Turning to simulations, we study the
business cycle properties of the locally rational model and contrast them with the properties of
both the rational expectations equilibrium and its representative agent counterpart.

6.1 Existence and Stability of Restricted Perceptions Equilibrium

To verify the existence of a restricted perceptions equilibrium, we appeal to Proposition 1 and as-
sume agents hold common beliefs; we proceed to find the fixed point of the finite sample analogue
of the T -map, denoted T̂ . To compute this map, we begin with a distribution of N agents drawn
from the distribution of assets and productivities present in the stationary recursive equilibrium.
We endow all agents with the same initial beliefs ψ and simulate the resulting locally rational
dynamics for S+ 1 periods assuming g = 0, which implies that beliefs are fixed at these initial
beliefs. Let λ̂i,t(ψ) and λ̄i,t(ψ) = (1+ r̄)λ̄ (ai,t−1(ψ),εi,t) be the resulting path of the shadow price
of wealth for agent i as well as the no aggregate risk counterpart. Similarly, let Xt(ψ) be the path
of observables. The map ψ → T̂ (ψ) is defined implicitly via

1
SN

S+1

∑
t=2

N

∑
i=1

(
log

(
λ̂i,t(ψ)

λ̄i,t(ψ)

)
−〈T̂ (ψ),Xt−1(ψ)〉

)
·Xt−1(ψ) = 0.

This map converges point-wise to T as N and S approach infinity.18 We numerically verify the
existence of an RPE by finding the fixed point of T̂ (ψ) when N = 100,000 and S = 1,000.19

To verify the stability of the RPE under learning we simulate the dynamics of the locally
rational economy from two different initial conditions with a decreasing gain learning algorithm.20

In both experiments, we initialize agents from the distribution of wealth and productivities in
the stationary recursive equilibrium and endow all agents with homogeneous beliefs. In the first
experiment, all agents begin with the RPE beliefs, while in the second all agents start at beliefs
consistent with the SRE, i.e. ψ = 0. We plot the path of the average beliefs, across the distribution
of agents, over the simulation in Figure 3. The black line represents the path of average beliefs
initialized at the RPE and the blue line represents the path initialized at ψ = 0. Theory predicts
that as long as the RPE is locally stable there will be a basin of attraction around the RPE such
that the beliefs of agents will converge to RPE beliefs in probability when using a decreasing gain
learning algorithm. This is born out in our numerical simulations numerical simulations as both
lines converge to the RPE levels over the course of 80,000 periods. The blue line illustrates that
the basis of attraction of the RPE is large, with the average beliefs converging to the RPE values by

18More precisely, for each ψ , T̂ (ψ) converges almost surely to T (ψ) as N and S approach infinity.
19Increasing both N and S does not appreciably change the value of the fixed point.
20We used gt = 0.5t−0.8 as the specification for the gain function
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Figure 3: Time path of average beliefs when agents are initialized with the RPE beliefs (black) and
ψ = 0 (blue). The RPE beliefs are represented with a solid red line.
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the end of the simulation even if beliefs are initialized far away from the RPE. We provide further
evidence for this in Appendix D, as well as stability analysis when agents have heterogeneous
forecasting rules. We should emphasize that the slow rate convergence of beliefs to the RPE is
indicative of the decreasing gain learning algorithm. Constant gain learning algorithms impart
faster convergence but, as we will emphasize in the next section, result in different long run values.

6.2 Statistical Properties

Next, we evaluate the business cycle properties of the locally rational model and compare with
the corresponding behavior of the heterogeneous agent rational expectations equilibrium as well
as the representative agent economy under both rational expectations and shadow price learning.
In all cases, we simulate the economy for 50,000 periods to construct an ergodic distribution of
the relevant state variables. Drawing from the ergodic distribution, each model is simulated for
240 periods and moments are constructed after HP-filtering the log of all relevant variables.21 The
same procedure is applied to the U.S. data which runs 240 quarters from 1948Q1 to 2007Q4.

Representative Agent Heterogeneous Agent

Data RE g = 0.001 g = 0.01 g = 0.035 RE g = 0.001 g = 0.01 g = 0.035

std(C)
std(Y ) 0.50 0.32 0.32 0.33 0.34 0.36 0.70 0.63 0.50
std(I)
std(Y ) 2.73 3.10 3.09 3.08 3.07 2.91 1.88 2.10 2.50

Table 2: Business Cycle Statistics

Table 2 reports standard deviations for consumption and investment relative to the standard
deviation of output for all models and the data. As has been well documented in the literature (see
Romer (2012)), the benchmark real business cycle model both overstates the variation of invest-
ment and, correspondingly, understates the variation of consumption relative to the data. Neither
the introduction of bounded rationality through shadow price learning nor the introduction of het-
erogeneous agents with rational expectations is able to significantly change any of these moments.
However, the interaction of bounded rationality and agent heterogeneity leads to substantially dif-
ferent second moments, bringing them closer to the data by increasing the standard deviation of
consumption while decreasing the standard deviation of investment.

Focusing on the last 4 columns of table 2, we observe that increasing the gain appears to bring
heterogeneous agent model closer in line with the rational expectations equilibrium. This obser-
vation is born out when inspecting the impulse responses to one standard deviation productivity
shock plotted in Figure 4. The black line in figure 4 plots the impulse response of rational expecta-
tions equilibrium constructed from a one-time unanticipated increase in productivity under perfect
foresight. The colored lines are the responses of the locally rational economy. We construct these
impulse responses by repeatedly drawing an initial distribution of assets, productivities and beliefs

21We construct 5000 simulations for each model and average over all simulations.
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Figure 4: Impulse responses to a one-standard deviation increase in productivity. The black line
refers to the linearized rational expectations equilibrium. The blue line refers to the RPE. The
purple, green and red lines refer to the mean response of the locally rational dynamics with gains
equal to 0.001, 0.01, and 0.035 respectively.
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from the ergodic distribution generated by long simulation. We then record the impulse responses
to a one-standard-deviation productivity shock from those initial starting points and plot the mean
response of all variables as a percentage deviation from the path which would prevail in absence
of the shock.

In all cases we observe the familiar humped shape responses of capital and consumption but,
under local rationality, the response of capital is muted while the response of consumption is
amplified. The locally rational agents appear to be smoothing consumption less than their rational
counterparts. This is especially apparent in the response of the RPE, as seen in the blue line,
which has very muted responses of investment and capital accumulation but amplified responses
of consumption. Unsurprisingly, the smallest gain economy (g = 0.001), represented by the purple
line, tracks the response of the RPE very closely. As the gain increases, the response of the locally
rational economy converges towards rational expectations with the closest being the red line (g =
0.035). To gain a better understanding of this behavior it is necessary to explore the endogenous
distribution of beliefs that arises in these economies.

We begin by constructing beliefs that rationalize the rational expectations equilibrium. Fol-
lowing the procedure of Appendix D.3, we construct beliefs ψRE(a,ε) such that if agents use these
beliefs to forecast their future shadow price of savings then, to first order, the economy behaves
identically to the RE economy. Note that the rational expectations beliefs vary based on individual
states, which codifies that different agents have different experiences in recessions (or booms) de-
pending on their current situation. These different experiences are what give rise to the endogenous
distribution of beliefs present in the locally rational model.

To study this distribution of beliefs, we follow the analysis of Section 4 and construct the best
linear predictor of beliefs conditional on wealth, E∗[ψ|a].22 As our interest is the response to a
TFP shock we focus on E∗[ψθ |a], the best linear predictor of the TFP coefficient conditional on
individual wealth, which we plot in Figure 5. The lines in the figure represent the long run ergodic
distributions associated with the REE (black), three different constant gain learning algorithms
(purple, green and red for gains 0.001, 0.01 and 0.035 respectively), and the RPE associated with
the decreasing gain learning algorithm (blue). Finally, as a point of reference, we plot the average
beliefs of the REE with the orange line. In all cases, observe that the coefficient on TFP is, on
average, negative. This reflects that an increase in TFP raises average consumption thus reduc-
ing the marginal value of savings.23 Starting with the black line representing beliefs in the REE,
observe that the belief coefficient on TFP is less negative for agents with more wealth. This pos-
itive relationship captures the ability of wealthier agents to use their wealth to buffer themselves
against business cycle fluctuations. Poorer agents are more exposed to aggregate shocks: their
consumption falls, proportionally, more when TFP is low and increases more when TFP is high.
We contrast that with the blue line representing the beliefs in the RPE, which differs from the REE
line both in slope and level. To understand the differences in slope, recall that the RPE is the long
run limit of the decreasing gain learning algorithm, where agents are using the entirety of their
lifetime experience to construct forecasts. Wealthy agents remember (and place near equal weight)

22See Appendix D.4 for details
23Higher TFP also raises interest rates but in this calibration the other effect dominates.
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Figure 5: Best linear predictor of belief coefficient on TFP conditional on individual wealth for the
ergodic joint distribution of wealth, productivities and beliefs.
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on their experiences when they were poor. Similarly, poorer agents remember their experiences
when they were rich. A result of this is that, on average, all agents have the same beliefs, which is
represented by a horizontal line, similar to what we observed in Section 4.

Unlike the partial equilibrium case studied in Section 4, beliefs also differ in their level: the
uniform beliefs associated with the RPE do not correspond the average beliefs of the REE. This
difference in average levels is a result of general equilibrium effects and helps partially explain the
differences in dynamics between the RPE and REE observed in Figure 4. To isolate the relative
contribution of the slope and level effects, consider a hypothetical economy populated by agents
with homogeneous beliefs at the average beliefs of the REE.24 This hypothetical economy removes
the level effect and focuses entirely on the dynamics driven homogeneous beliefs. The orange line
in Figure 6 plots the impulse responses of consumption, capital, hours and the real interest rate in
this hypothetical economy compared to those of REE (black) and the RPE (blue). The hypothetical
economy lies roughly halfway between those two lines.

Figure 6: Impulse responses to a one-standard deviation increase in productivity. Black line refers
to the linearized rational expectations equilibrium. The blue line refers to the RPE. The orange
line refers to IRF of the hypothetical economy where all agents have homogeneous beliefs at the
average value of the REE beliefs.

To understand this behavior, consider the beliefs of a wealthy agent in the hypothetical econ-
omy represented by the orange line in Figure 5. Wealthy agents in the hypothetical economy have
a more negative coefficient on TFP than their counterparts in the REE, which implies that they
believe themselves to be relatively more exposed to business cycles. As a result, wealthier agents

24This is also the long run limit of beliefs in partial equilibrium: of a measure zero locally rational agent using a
decreasing gain learning algorithm embedded in the REE model.
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over-consume in booms and under-consume in recessions, which explains the amplified response
of consumption observed in Figure 6.25 Along with their higher consumption, the wealthier, more
productive agents also supply less labor in booms relative to rational expectations, which causes a
smaller increase in hours and interest rates relative to REE.

If the agents of this hypothetical economy could update their beliefs to improve their forecasts,
they would want to have a more negative coefficient of TFP since the smaller increase in interest
rates, in response to a positive TFP shock, would result even lower shadow prices of savings. This
effect is amplified in equilibrium, as a more negative coefficient on TFP results in even lower
forecasts of the shadow price of savings when TFP is high, which, in turn, results in even higher
consumption and even lower labor and interest rates. In equilibrium, this process lowers the coef-
ficient on TFP to the RPE value observed in Figure 5. The interaction of the level and slope effects
is needed to fully explain the increased response of consumption observed in the RPE. Examining
Figure 6, we conclude that roughly half the difference between the REE and RPE is explained by
homogeneous beliefs and the remaining differences are due to general equilibrium.

Similar to what we observed in partial equilibrium, when agents update their beliefs using a
constant gain learning algorithm they start discounting their past experiences and, as a result, their
beliefs depend more on their recent experiences. Increasing the constant gain places more weight
on the recent experiences, and hence their current state, which brings the resulting distribution
of beliefs more in line with the rational expectations beliefs both in slope and level. We observe
this clearly in Figure 5 as the slope and level of the purple, green, and red lines are increasing
in their respective gains. This shift in beliefs is reflected in the Figure 4 impulse responses with
higher gains being closer to the rational expectations paths. While the corresponding moments in
Table 2 are also closer to rational expectations, they are not identical.26 The model with a gain of
g = 0.035 has the best fit as wealthier agents better respond to their current circumstances, but also
remember what it was like to be poor. This hysteresis effect is not merely a theoretical construct, it
parallels many results documented in the empirical literature. For example, see the seminal paper
by Malmendier and Nagel (2011).

7 Conclusion

By providing a modeling environment that engenders tractable distributional dynamics, the hetero-
geneous agent literature has greatly expanded the reach of DSGE models; however, to an extent
even greater than their RA counterparts, these modeling environments place unrealistically extreme
demands on the cognitive capacity of agents. Local rationality provides a behavioral paradigm that

25Note that poorer agents will have the reverse effect: under-consuming in booms and over-consuming in recessions.
Aggregate consumption dynamics are determined by the behavior of the richer agents.

26A curious reader might be interested in the dynamics if the forecast rule were expanded to include interaction with
idiosyncratic states. We explore this in Section D.2.2 of the appendix. The extended learning rule brings the learning
dynamics more in line with rational expectations but features a far more complicated forecasting model and instability
not present in the baseline model.
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mitigates this criticism: locally rational agents are very good at understanding themselves and
their behaviors, but are less certain about how their behaviors interact with the behaviors of others
and the attendant aggregate consequences; thus, instead of taking the RE view that agents under-
stand the endogenously determined evolution of the economy’s wealth distribution, locally rational
agents simply estimate the evolution of certain aggregates over time, as well as the relationship be-
tween these aggregates and their own behavior.

Local rationality adheres to the cognitive consistency principle, which improves a model’s
realism. Interestingly, in the heterogeneous-agent environment, this improved realism benefits the
modeler: because this principle puts the modeler and agents on equal footing, it is not necessary to
solve for a time-invariant transition dynamic over an infinite dimensional state space – the modeler
can work recursively exactly as the agents do.

An economy populated with locally rational agents has associated with it a restricted per-
ceptions equilibrium that is homogeneous in beliefs, and that serves as a disciplined benchmark;
however, it is natural to assume locally rational agents use constant gain learning algorithms when
updating their beliefs, as this allows them to adjust their responses to aggregate conditions as local
conditions vary. Under this assumption, agents’ beliefs converge over time to an ergodic distribu-
tion that is centered near, but not directly on the economy’s RPE.

Under low gain the distribution of beliefs is tightly centered near the RPE: agents respond
only slowly to, e.g., changes in their wealth; for larger gains the distribution is more widely spread
as agents’ response times quicken and their attendant behaviors more closely approximate those
of rational agents. This feature provides a nice avenue through which the gain can be used as a
tuning device to match models to data. Using the Krusell-Smith environment, and in contrast to
RE, we found that for reasonable gain levels the model under local rationality could reproduce
the volatility of consumption relative to output found in US data. This is explained by the slow
adjustment of agents’ beliefs: under local rationality the beliefs of newly rich agents are clouded
by the recent experiences with poverty which, in effect, amplifies their optimism and thus raises
their consumption response to positive TFP shocks relative to their rational counterparts.
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Appendix: On-line Supplementary Materials

A Appendices for Section 3

The locally rational model can be written as

uc(ĉt(a,ε,ψ), l̂t(a,ε,ψ))−βλ
e
(ât(a,ε,ψ),ε)exp(〈ψ,Xt))≥ 0

ul(ĉt(a,ε,ψ), l̂t(a,ε,ψ))−uc(ĉt(a,ε,ψ), l̂t(a,ε,ψ))wt = 0 (A.1)

ât(a,ε,ψ)+ ĉt(a,ε,ψ)− (1+ rt)a−wtε(1− l̂t(a,ε,ψ)) = 0

with the first equation holding with strict inequality only if ât(a,ε,ψ) = a. Define Yt = (rt ,wt) as
the vector of aggregate variables relevant to the consumer. For a given history of individual shocks,
ε t , the time path of individual choices is given recursively by

ât(ε
t ,ψ) = ât(ât−1(ε

t−1,ψ),εt ,ψ)

ĉt(ε
t ,ψ) = ĉt(ât−1(ε

t−1,ψ),εt ,ψ)

l̂t(ε t ,ψ) = l̂t(ât−1(ε
t−1,ψ),εt ,ψ).

Similarly one can define the time path of the shadow price of wealth as

λ̂t(ε
t ,ψ) = (1+ rt)uc

(
ĉt(ε

t ,ψ), l̂t(ε t ,ψ)
)
.

Taking the path of aggregates as given, a fixed point of the T-map ψ∗ solves the following system
of equations:

lim
t→∞

E0

[(
log
(

λ̂t(ε
t ,ψ)/λ (ât−1(ε

t−1,ψ),εt)
)
−〈ψ,Xt−1〉

)
Xt−1

]
= 0. (A.2)

This can be written more succinctly as

lim
t→∞

E0

[(
d log λ̂t(ât−1(ε

t−1,ψ∗),εt)−〈ψ∗,Xt−1〉
)

Xt−1

]
= 0 (A.3)

where d?t = ?t−? represents a deviation from the SRE values.

A.1 Proof of Proposition 1

We’re focusing on RPE which are local to the SRE, which implies that dYt = Yt −Y = O(σν)
and E0 [dYt ] = O(σ2

ν ), where σν is the standard deviation of the innovations to TFP. Without loss

of generality we will assume that Xt =

(
1

dX̂t

)
where X̂t is a vector of observables.27 As we are

27Our benchmark model is in exactly this form. More generally one can always demean all variables.
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studying an RPE local to the SRE we can assume that dX̂t = O(σ) and E0
[
dX̂t
]
= O(σ2

ν ). It

will also prove convenient to partition ψ =

(
ψ0
ψ1

)
, so that 〈ψ,Xt〉 = ψ0 + 〈ψ1,dX̂t〉. Under these

assumptions, equation (A.3) can be written as two equations

lim
t→∞

E0

[
d log λ̂t(ât−1(ε

t−1,ψ∗),εt)−〈ψ∗,Xt−1〉
]
= 0 (A.4)

lim
t→∞

E0

[(
d log λ̂t(ât−1(ε

t−1,ψ∗),εt)−〈ψ∗,Xt−1〉
)

dX̂t−1

]
= 0. (A.5)

An object of particular interest for us is the variable φ∗t = 〈ψ∗,Xt〉 capturing the deviations in
forecasts from SRE values. If we define φ

∗
= 〈ψ∗,X〉 = ψ∗0 then by construction dφ∗t = φ∗t −

φ
∗ satisfies dφ∗t = O(σν) and E0dφ∗t = O(σ2

ν ). Finally, let c(a,ε,φ),a(a,ε,φ), and l(a,ε,φ) be
defined by solving the following non-linear equations

uc(c̄(a,ε,φ), l̄(a,ε,φ))−βλ
e
(ā(a,ε,φ),ε)exp(φ)≥ 0

ul(c̄(a,ε,φ), l̄(a,ε,φ))−uc(c̄(a,ε,φ), l̄(a,ε,φ))w = 0

a(a,ε,φ)+ c(a,ε,φ)− (1+ r)a−wε(1− l(a,ε,φ)) = 0,

where the first equation holds with strict inequality only if ā(a,ε,φ) = a. We can use these objects
to construct a first order approximation of the policy rules in the following Lemma:

Lemma 1. There exists functions

cY (a,ε,φ
∗
),cφ (a,ε,φ

∗
),aY (a,ε,φ

∗
),aφ (a,ε,φ

∗
), lY (a,ε,φ

∗
), and lφ (a,ε,φ

∗
)

such, that almost everywhere,

dĉt(a,ε,ψ∗) =
(

c(a,ε,φ∗)− c(a,ε)
)
+ cY (a,ε,φ

∗
)dYt + cφ (a,ε,φ

∗
)dφ

∗
t +O(σ2

ν )

dât(a,ε,ψ∗) =
(

a(a,ε,φ∗)−a(a,ε)
)
+aY (a,ε,φ

∗
)dYt +aφ (a,ε,φ

∗
)dφ

∗
t +O(σ2

ν )

dl̂t(a,ε,ψ∗) =
(

l(a,ε,φ∗)− l(a,ε)
)
+ lY (a,ε,φ

∗
)dYt + lφ (a,ε,φ

∗
)dφ

∗
t +O(σ2

ν )

Proof. When σν = 0, equations (A.1) satisfy

uc(ĉt(a,ε,ψ∗), l̂t(a,ε,ψ∗))−βλ
e
(ât(a,ε,ψ∗),ε)exp(〈ψ∗,X))+O(σν)≥ 0

ul(ĉt(a,ε,ψ∗), l̂t(a,ε,ψ∗))−uc(ĉt(a,ε,ψ∗), l̂t(a,ε,ψ∗))w+O(σν) = 0 (A.6)

ât(a,ε,ψ∗)+ ĉt(a,ε,ψ∗)− (1+ r)a−wε(1− l̂t(a,ε,ψ∗))+O(σ) = 0,

which implies that, when σν = 0, ĉt(a,ε,ψ∗) = c̄(a,ε,φ∗), and similarly for the other policy rules.
Expanding (A.1), for points of the state space (a,ε) where the borrowing constraint does not bind
(a(a,ε)> a), around this σν = 0 limit implies yields

A+(a,ε,φ ∗)

 ĉt(a,ε,ψ∗)− c(a,ε,φ ∗)
l̂t(a,ε,ψ∗)− l(a,ε,φ ∗)
ât(a,ε,ψ∗)−a(a,ε,φ ∗)

+B+(a,ε,φ ∗)dYt +C+(a,ε,φ ∗)dφ
∗
t +O(σ2

ν ) = 0,
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where

A+(a,ε,φ ∗) =

 ucc(a,ε,φ
∗
) ucl(a,ε,φ

∗
) −βλ

e
a(a(a,ε,φ

∗
),ε)exp(φ ∗)

ucl(a,ε,φ
∗
)−ucc(a,ε,φ

∗
)w ull(a,ε,φ

∗
)−ucl(a,ε,φ

∗
)w 0

1 −wε 1



B+(a,ε,φ ∗) =

 0 0
0 −ul(a,ε,φ

∗
)

−a ε(1− l(a,ε,φ ∗))

 and C+(a,ε,φ ∗) =

 −βλ
e
(a(a,ε,φ ∗),ε)exp(φ ∗)

0
0

 ,

with ucc(a,ε,φ
∗
) = ucc(c(a,ε,φ

∗
), l(a,ε,φ∗)), etc. Similarly, the first order expansion for the

points for the points where the borrowing constraint binds (a(a,ε,φ∗) = 0) implies

A−(a,ε,φ ∗)

 ĉt(a,ε,ψ∗)− c(a,ε,φ ∗)
l̂t(a,ε,ψ∗)− l(a,ε,φ ∗)
ât(a,ε,ψ∗)−a(a,ε,φ ∗)

+B−(a,ε,φ ∗)dYt +C−(a,ε,φ ∗)dφ
∗
t +O(σ2

ν ) = 0,

where

A−(a,ε,φ∗) =

 0 0 1
ucl(a,ε,φ

∗
)−ucc(a,ε,φ

∗
)w ull(a,ε,φ

∗
)−ucl(a,ε,φ

∗
)w 0

1 −wε 1


B−(a,ε,φ∗) =

 0 0
0 −ul(a,ε,φ

∗
)

−a ε(1− l(a,ε,φ∗))


C−(a,ε,φ∗) =

 0
0
0

 .

Combining these two facts together implies that dĉt(a,ε,ψ∗)
dl̂t(a,ε,ψ∗)
dât(a,ε,ψ∗)

=

 c(a,ε,φ ∗)− c(a,ε)
l(a,ε,φ ∗)− l(a,ε)
a(a,ε,φ ∗)−a(a,ε)

+

{
A+(a,ε,φ ∗)−1B+(a,ε,φ ∗)dYt if a(a,ε,φ ∗)> 0
A−(a,ε,φ ∗)−1B−(a,ε,φ ∗)dYt if a(a,ε,φ ∗) = 0

+

{
A+(a,ε,φ ∗)−1C+(a,ε,φ ∗)dYt if a(a,ε,φ ∗)> 0
A−(a,ε,φ ∗)−1C−(a,ε,φ ∗)dYt if a(a,ε,φ ∗) = 0

+O(σ2
ν ),

which completes the proof.

With these policy rules in had we can directly construct λY and λφ such that

d log λ̂t(a,ε,ψ∗) =
(

logλ (a,ε,φ ∗)− logλ (a,ε)
)
+λY (a,ε,φ

∗
)dYt +λφ (a,ε,φ

∗
)dφ

∗
t +O(σ2

ν ) (A.7)

We note that if φ
∗ 6= 0 then, to zeroth order, the policies of the locally rational agent will not

align with the rational agent. A direct corollary of the expansion above shows that if ψ∗ is chosen
optimally this cannot be the case.
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Corollary 1. φ
∗
= 〈ψ∗,X〉= ψ∗0 = 0+O(σ2

ν ).

Proof. We have that d log λ̂t(a,ε)= drt−γdĉt(a,ε,ψ∗), thus a first order expansion of (A.4) yields

lim
t→∞

E0

[(
d log λ̂t(a(ε t ,φ

∗
),εt ,ψ

∗)−〈ψ∗,X +dXt−1〉
)
+O(σ2

ν ) = 0,

where a(ε t ,φ
∗
) represents the zeroth order path of assets defined recursively via a(ε t ,φ

∗
) =

a(a(ε t−1,φ
∗
),εt ,φ

∗
). Applying equation (A.7) along with E0 [dYt ] = O(σ2

ν ) = E0 [dXt ] implies

lim
t→∞

E0

[
logλ (a(ε t−1,φ

∗
),εt ,φ

∗
)− logλ (a(ε t−1,φ

∗
),εt)−φ

∗
]
+O(σ2

ν ) = 0. (A.8)

We now compare λ (a,ε,φ∗) to λ (a,ε). First, we note that by definition λ (a,ε,0) = λ (a,ε). Next
we consider λ (a,ε,φ∗) for φ

∗
> 0. Increasing φ

∗ raises the shadow price of savings, therefore we
can conclude that a(a,ε,φ∗) is increasing in φ

∗ and hence

logλ
e
(ā(a,ε,φ∗),ε)< λ

e
(a,ε).

Thus

λ̄ (a,ε,φ∗) = (1+ r)uc(c(a,ε,φ
∗
), l(a,ε,φ∗))

= (1+ r)βλ
e
(ā(a,ε,φ∗),ε)exp(φ∗)< λ (a,ε)exp(φ∗).

For constrained agents we have that λ̄ (a,ε,φ∗) = λ̄ (a,ε) for all φ
∗
> 0, and thus we have

log
(

λ̄ (a,ε,φ∗)/λ (a,ε)
)
< φ

∗

for all (a,ε)when φ
∗
> 0. We conclude that

lim
t→∞

E0

[
logλ (a(ε t−1,φ

∗
),εt ,φ

∗
)− logλ (a(ε t−1,φ

∗
),εt)−φ

∗
]
+O(σ2

ν )< 0

for all φ
∗
> 0. Similar arguments show that

lim
t→∞

E0

[
logλ (a(ε t−1,φ

∗
),εt ,φ

∗
)− logλ (a(ε t−1,φ

∗
),εt)−φ

∗
]
+O(σ2

ν )> 0

for all φ
∗
< 0. We thus conclude, via equation (A.8), that φ

∗
= 0+O(σ2

ν ).

We can now turn to proving the main result. As dφ∗t = dX̂T
t ψ∗1 , this corollary implies that

d log λ̂t(a,ε,ψ∗) = λY (a,ε)dYt +λφ (a,ε)dX̂T
t ψ
∗
1 +O(σ2

ν ),
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where λY (a,ε) = λY (a,ε,0) and λφ (a,ε) = λφ (a,ε,φ
∗
). A second order expansion of (A.5) then

yields

lim
t→∞

E0
[
dX̂t−1

(
dY T

t λY (a(ε t−1),εt)
T +λφ (a(ε t−1),εt)dX̂T

t ψ
∗
1 −dX̂T

t−1ψ
∗
1
)]

+O(σ3
ν ) = 0,

We note that (a(ε t−1),εt) is independent of dYt and dX̂t , and converges in probability to the station-
ary joint distribution of assets and productivities Ω∗. If we define ΣXY = limt→∞E0

[
dX̂t−1dY T

t
]
,

ΣXX = limt→∞E0
[
dX̂t−1dXT

t−1
]
, and ΣXX+ = limt→∞E0

[
dX̂t−1dX̂T

t
]
, then we have

ΣXYDY +Dφ ΣXX+ψ
∗
1 −ΣXX ψ

∗
1 +O(σ3

ν ) = 0,

where

DY =
∫

λY (a,ε)T dΩ
∗(a,ε)

Dφ =
∫

λφ (a,ε)dΩ
∗(a,ε).

The same arguments as the proof of Corollary 1 imply that |λφ (a,ε)|< 1 and hence |Dφ |< 1. This,
along with stationarity of dX̂t , implies that ΣXX −Dφ ΣXX+ invertible and hence

ψ
∗
1 =

(
ΣXX −Dφ ΣXX+

)−1
ΣXYDY +O(σν)

is uniquely determined for small enough σν .
28 Thus for small enough σν the RPE must be unique.

B Appendices for Section 4

We begin by studying the CARA economy under the assumption of perfect foresight. As noted
by Acharya and Dogra (2020) and Boppart, Krusell, and Mitman (2018) linearizing the the model
with perfect foresight is equivalent to linearizing the full stochastic model.

Let ct(a,ε) represent the individual consumption policy rules when ση = 0 for a given r0.
Guess the following functional form for the consumption policy rule for the rational agent

ct(a,ε) = C t +µ t((1+ rt)a+ ε).

This implies the following policy rule for individual wealth

at(a,ε) = (1−µ t)((1+ rt)a+ ε)−C t ,

which implies that

ct+1(at(a,ε),ε ′) = C t+1 +µ t+1
(
(1+ rt+1)

(
(1−µ t)((1+ rt)a+ ε)−C t

)
+ ε
′) .

28Note that ΣXX −Dφ ΣXX+ = O(σν)
2
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Therefore, conditional on (a,ε), −γct+1(at(a,ε),ε ′) has mean

−γ
(
C t+1 +µ t+1

(
(1+ rt+1)

(
(1−µ t)((1+ rt)a+ ε)−C t

)
+1
))

and variance
γ

2
µ

2
t+1σ

2
ε

Exponentiating −γct+1(at(a,ε),ε ′) and taking expectations yields

logEt exp
(
−γct+1(at(a,ε),ε ′)

)
=− γ

(
C t+1 +µ t+1(1+ rt+1)

(
(1−µ t)((1+ rt)a+ ε)−C t

))
+

1
2

γ
2
µ

2
t+1σ

2
ε

=− γµ t+1(1+ rt+1)(1−µ t)((1+ rt)a+ ε)− γµ t+1

− γ
(
C t+1−µ t+1(1+ rt+1)C t

)
+

1
2

γ
2
µ

2
t+1σ

2
ε

which can be plugged into the Euler equation to get

−γ
(
C t +µ t((1+ rt)a+ ε)

)
= log(βφ(1+ rt+1))− γµ t+1(1+ rt+1)(1−µ t)((1+ rt)a+ ε)

− γµ t+1− γ
(
C t+1−µ t+1(1+ rt+1)C t

)
+

1
2

γ
2
µ

2
t+1σ

2
ε .

This equation must hold for all (a,ε) which implies

µ t = µ t+1(1+ rt+1)(1−µ t) (B.9)

C t =−
1
γ

log(βφ(1+ rt+1))+C t+1−µ t+1
(
(1+ rt+1)C t +1

)
− 1

2
γµ

2
t+1σ

2
ε (B.10)

B.1 Proof of Proposition 2

Assuming r0 = r we have rt = r which implies

ct(a,ε) = c(a,ε) = C +µ((1+ r̄)a+ ε).

Equations (B.9) and (B.10) imply that µ and C must satisfy

µ = µ(1+ r̄)(1−µ)

and
C =−1

γ
log(βφ(1+ r̄))+C −µ(1+ r̄)C −µ− 1

2
γµ

2
σ

2
ε

Simplifying these two equations implies

µ =
r̄

(1+ r̄)

and

C =
−1

γ
log(βφ(1+ r̄))−µ− 1

2γµ
2
σ2

ε

r̄
.
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B.2 Proof of Proposition 3

Define d?t ≡ ?t−? represent the deviation of an object from its steady-state value. Differentiating
equation (B.9) implies

dµ t = dµ t+1−µ(1+ r̄)dµ t +µ(1−µ)drt+1 +O(dr2
t ).

We require µ̄r, which is the change in µ̄t given a change in rt , accounting for the impact of the
implied changes in future values of r on current µ̄ . Differentiating (17) of the main text implies
drt+1 = ρdrt +O(dr2

t ), so that, to first order,

dµ̄t = dµ̄t+1−µ(1+ r̄)dµ̄t + µ̄(1− µ̄)(1+ r̄)ρdrt .

Since µ̄(1− µ̄)(1+ r̄) = µ and 1+ µ̄(1+ r̄) = 1+ r̄, we have

dµ̄t = (1+ r̄)−1 (dµ̄t+1 + µ̄ρdrt) .

Forward iterating, we may finally conclude that

µ̄r =

(
µ̄ρ

1+ r̄

)
∑
n≥0

(
ρ

1+ r̄

)n

drt =
µ̄ρ

(1+ r̄)−ρ
. (B.11)

Similarly, differentiating (B.10) implies

dC t =−
1
γ

drt+1 +dC t+1− (1+ r̄)C dµ t+1−µ(1+ r̄)dC t −µC drt+1−dµ t+1− γµσ
2
ε dµ t+1 +O(dr2

t ),

which we may write as dC t = (1+ r̄)−1 (dC t+1 +∇drt
)
, where

∇ =−ρ
(
γ
−1 + µ̄C (1+ r̄)+ µ̄r(1+C (1+ r))+ γ µ̄σ

2
ε µ̄rρ

)
.

Forward iterating as above, we conclude

C r =
∇

(1+ r̄)−ρ
. (B.12)

As ct(a,ε) = C t +µ t((1+ rt)a+ ε) we have

dct(a,ε) = dC t +dµ t((1+ r̄)a+ ε)+µ(1+ r̄)adrt

=
(
C r +µr ((1+ r̄)a+ ε)+µ(1+ r̄)a

)
drt

and
dat(a,ε) = a(1+ r̄)drt−dct(a,ε) =

(
a−C r−µr((1+ r̄)a+ ε)

)
drt .
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Next, we consider the locally rational decisions rules that solve

−γ ĉt(a,ε,ψ) = log(βφ)+ log
(

λ
e
(ât(a,ε,ψ),ε)

)
+ψ log((1+ rt)/(1+ r̄))

ât(a,ε,ψ) =(1+ rt)a+ y− ĉt(a,ε,ψ).

When rt = r̄ this is solved by ĉt(a,ε,ψ) = c(a,ε) and ât(a,ε,ψ) = a(a,ε) so for small deviations
drt we have

−γdĉt(a,ε,ψ) =
λ

e
a(a(a,ε),ε)

λ
e
(a(a,ε),ε)

dât(a,ε,ψ)+ψdrt +O(dr2
t )

dât(a,ε,ψ) =(1+ r̄)adrt−dĉt(a,ε,ψ)+O(dr2
t ).

To simplify this expression note that

λ
e
a(a
′,ε) =

∫
λ a(a′,ε ′)dPr(ε ′)

=−γ

∫
(1+ r̄)exp

(
−γc(a′,ε ′)

)
ca(a′,ε ′)︸ ︷︷ ︸

µ(1+r̄)

dPr(ε ′)

=−γµ(1+ r̄)
∫
(1+ r̄)exp

(
−γc(a′,ε ′)

)
dPr(ε ′)

=−γµ(1+ r̄)λ
e
(a′,ε),

which then implies that dĉt and dât satisfy

dĉt(a,ε,ψ) = µ(1+ r̄)dât(a,ε,ψ)− ψ

γ
drt +O(dr2

t )

dât(a,ε,ψ) = (1+ r̄)adrt−dĉt(a,ε,ψ)+O(dr2
t ).

Solving for dât(a,ε,ψ) and dĉt(a,ε,ψ) then yields

dĉt(a,ε,ψ) =

(
µ(1+ r̄)a− ψ

γ(1+ r̄)

)
drt +O(dr2

t ) (B.13)

dât(a,ε,ψ) =

(
a+

ψ

γ(1+ r̄)

)
drt +O(dr2

t ). (B.14)

We conclude by noting that under rational expectations the perfect foresight and stochastic
economies are equivalent to first order and so

dct(a,ε) =
(
C r +µr ((1+ r̄)a+ ε)+µ(1+ r̄)a

)
drt +O(σ2

η) (B.15)

dat(a,ε) =
(
a−C r−µr((1+ r̄)a+ ε)

)
drt +O(σ2

η). (B.16)

As O(dr2
t ) = O(σ2

η), by comparing equations (B.14) and (B.16) we conclude that

at(a,ε) = â(a,ε,ψRE(a,ε))+O(σ2
η)
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and, hence,
ct(a,ε) = ĉ(a,ε,ψRE(a,ε))+O(σ2

η)

for
ψ

RE(a,ε) =−γ(1+ r̄)(C r +µr)︸ ︷︷ ︸
ψ0

+−γ(1+ r̄)2
µr︸ ︷︷ ︸

ψa

a+−γ(1+ r̄)µr︸ ︷︷ ︸
ψε

(ε−1).

Equation (B.11) implies that ψa < 0 while adding together (B.11) and (B.12) implies29

C r +µr =
−1

γ
ρ−2µ̄rρ− γµσ2

ε µrρ

(1+ r̄)−ρ
,

which guarantees ψ0 > 0 as desired.

B.3 Proof of Theorem 1

Let ιt the shock that captures whether the agent dies at the end of period t. Define st = (εt , ιt ,ηt)
as the vector of time t shocks. For a given belief ψ , the agent’s stochastic path for wealth is given
by

at(st ,ψ) = (1− ιt)ât(at−1(st−1,ψ),εt ,ψ)

with initial conditions a−1 = 0. Define

at(st) = (1− ιt)a(at−1(st−1),εt) = (1− ιt)
(
at−1(st−1)+(1−µ)εt

)
as the stochastic wealth position of the agent when ση = 0 with initial conditions a−1 = 0. Finally,
define

a(1)t (st ,ψ) = (1− ιt)

(
a(1)t−1(s

t−1,ψ)+

(
at−1(st−1)+

ψ

γ(1+ r̄)

)
drt

)
with the initial condition a(1)−1 = 0. By construction a(1)t (st ,ψ) = O(ση), we show in the following
claim that that it captures the first order approximation to at(st ,ψ) relative to at(st).

Claim 1. at(st ,ψ) = at(st)+a(1)t (st ,ψ)+O(σ2
η)

29Recall we are focusing on the case where average assets are zero so C (1+ r̄) = 1
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Proof. We proceed by induction, as the claim holds for t =−1. Assume true for t−1 then

at(st ,ψ) = (1− ιt)ât(at−1(st−1,ψ),εt ,ψ)

= (1− ιt)a(at−1(st−1,ψ),εt)+(1− ιt)

(
at−1(st−1,ψ)+

ψ

γ(1+ r̄)

)
drt +O(σ2

η)

= (1− ιt)
(

at−1(st−1)+a(1)t−1(s
t−1,ψ)+O(σ2

η)+(1−µ)εt

)
+(1− ιt)

(
at−1(st−1)+a(1)t−1(s

t−1,ψ)+O(σ2
η)+

ψ

γ(1+ r̄)

)
drt +O(σ2

η)

= (1− ιt)
(
at−1(st−1)+(1−µ)εt

)
+(1− ιt)

(
a(1)t−1(s

t−1,ψ)+

(
at−1(st−1)+

ψ

γ(1+ r̄)

)
drt

)
+O(σ2

η)

= at(st)+a(1)t (st ,ψ)+O(σ2
η).

The third equality used our knowledge that a(1)t−1(s
t−1,ψ) = O(ση) so that

a(1)t−1(s
t−1,ψ)drt = O(σ2

η).

We can then directly use the methodology of Evans, Evans, and McGough (2022) to show that
the process for at(st ,ψ) is locally a contraction and thus there must exist and ergodic distribution.
Our next step is to characterize an RPE in this environment. The log shadow price of wealth, at
history st , for the individual is given by

logλt(st ,ψ) = log λ̂ (at−1(st−1),εt ,ψ) = log(1+ rt)− γ ĉt(at−1(st−1),εt ,ψ).

In the definition of an RPE, the agent chooses ψ optimally once and for all in order to best forecast
deviations in the shadow price from the steady state according to the PLM in equation (18). That
optimal choice is characterized by the following optimality condition

0 = lim
t→∞

E0

[
log
(

1+ rt−1

1+ r̄

)(
log
(

λt(st ,ψ)/λ (at−1(st−1),εt)
)
−ψ log

(
1+ rt−1

1+ r̄

))]
.

A first order expansion of log((1+ rt−1)/(1+ r̄)) implies

log((1+ rt−1)/(1+ r̄)) = drt−1 +O(σ2
η).
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As logλ (a,ε) = log((1+ r̄))− γc(a,ε), we compute the following first order expansion:

log

(
λt(st ,ψ)

λ (at−1(st−1),εt)

)
= drt− γdĉt(at−1(st−1),εt ,ψ)+O(σ2

η)

= drt− γ

[
µ(1+ r̄)

(
at−1(st−1)+a(1)t−1(s

t−1,ψ)+O(σ2
η)
)

− ψ

γ(1+ r̄)

]
drt +O(σ2

η)

= drt− γ

(
µ(1+ r̄)at−1(st−1)− ψ

γ(1+ r̄)

)
drt +O(σ2

η).

A second order expansion of the optimality condition for the RPE implies that ψRPE must satisfy

0 = lim
t→∞

E0

[
drt−1

(
drt− γ

(
µ(1+ r̄)at−1(st−1)− ψRPE

γ(1+ r̄)

)
drt−ψ

RPEdrt−1

)]
+O(σ3

η).

Finally, we note that at(st) and drt are independent with our model set such that E0 [at(st)] = 0 and

also that limt→∞E0[drtdrt−1] = ρ limt→∞E0[drt−1drt−1] = ρ
σ2

η

1−ρ2 ,which implies that ψRPE must
satisfy

0 = ρ
σ2

η

1−ρ2 +
ψRPE

(1+ r̄)
ρ

σ2
η

1−ρ2 −ψ
RPE σ2

η

1−ρ2 +O(σ3
η).

which implies that
ψ

RPE =
ρ

1− ρ

(1+r̄)
+O(ση)

is uniquely determined for small enough ση .

B.4 Decreasing Gain Convergence

Here we verify that the decreasing gain algorithm converges to the the RPE. In Figure 7 we plot
the time paths of beliefs, ψ , of an agent learning with a decreasing gain learning algorithm, gt =
0.5t−0.65 for 1,000,000 periods. The black line represents the time path of beliefs when ψ is
initialized at 0, while the blue line represents the time path of beliefs when ψ is initialized at the
RPE values. As can be clearly seen both lines converge to the RPE value for beliefs (red line).
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Figure 7: Time path of beliefs generated by an agent using a decreasing gain learning algorithm.
The black line represents the time path of beliefs with initial beliefs are zero. The red line repre-
sents the time path of beliefs when beliefs are initialized at the RPE. The red line represents the
RPE.
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C Appendices for Section 5

Here we present additional numerical details of the algorithm used to simulate the locally rational
economy. We will take as given the ability to solve for a Bewely-Aiyagari steady state, and instead
focus on the steps necessary to simulate the behavior of the locally rational agents. We first de-
scribe the initialization process, which includes precomputing objects that will be required for later
simulating. We then turn to the simulation itself, which is we detail as a step-by-step procedure for
going from the beginning of time t to the beginning of time t +1.

C.1 Initialization

Initialization involves three steps, as identified in Algorithm 1.

Algorithm 1 Initialization
1: Approximate SRE objects {µ,r,w,c(a,ε),a(a,ε), l(a,ε),n(a,ε)}
2: Approximate LR policy rules ĉ(a,ε,φ ,r,w), l̂(a,ε,φ ,r,w) and â(a,ε,φ ,r,w)
3: Construct initial state from µ and initial ψ

Step 1 is a standard procedure, and so we will only report the general parameters used for approxi-
mating the objects. The individual policy functions (c̄, ā, l̄, n̄) were approximated using cubic spline
approximations along the asset dimension with Na = 150 non-equally spaced gridpoints given by

ai = a+(ā−a)
(

i−1
Na−1

)1.7

.

We set lower bound on assets to ā = 0 while the upper bound is set to ā = 600. We use a finite state
approximation to the AR(1) process using the Rouwenhsorst method with 11 grid points provided
by the QuantEcon.jl package. For a given r and w the optimal individual decisions are found using
the endogenous grid method of Carroll (2006) with a terminal tolerance of 10−5 in the consumption
policies under the sup norm. Finally, the distribution is approximated using 5000 equally spaced
points along the asset dimension using the algorithm of Young (2010).

Next, we turn to step 2, which pre-computes the LR policy rules necessary to simulate the LR
model. Define the policy functions ĉ(a,ε,φ ,r,w), l̂(a,ε,φ ,r,w) and â(a,ε,φ ,r,w) that solve the
following system of equations

uc
(
ĉ(a,ε,φ ,r,w), l̂(a,ε,φ ,r,w)

)
≥ βλ̄

e (â(a,ε,φ ,r,w),ε)exp(φ) (C.17)

ul
(
ĉ(a,ε,φ ,r,w), l̂(a,ε,φ ,r,w)

)
= uc

(
ĉ(a,ε,φ ,r,w), l̂(a,ε,φ ,r,w)

)
w (C.18)

â(a,ε,φ ,r,w)+ ĉ(a,ε,φ ,r,w) = (1+ r)a+w · ε ·
(
1− l̂(a,ε,φ ,r,w)

)
, (C.19)
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where equation (C.17) holds with strict inequality only if â(a,ε,φ ,r,w) = a. Here φ represents
the log deviation of the expected shadow price of savings from their SRE values. It is straight-
forward to show that ĉt(a,ε,ψ) = ĉ(a,ε,〈ψ,Xt〉,rt ,wt) and similarly for l̂t and ât . Precomputing
(ĉ, l̂, â) can therefore allow for faster simulation of the economy. To do this we maintain the same
gridpoints along the a and ε dimensions used to solve for the SRE. We use 20th order Chebyshev
polynomials along the φ dimension and 10th order Chebyshev polynomials along the r and w di-
mension, using the BasisMatrices package provided by QuantEcon.jl. We then solve equations
(C.17)-(C.19) at each gridpoint to construct approximations to the policy rules.30

Finally, in step 3 we construct the initial state for simulation. As presented in Section 3.2,
the full aggregate state for the economy is ξt ≡ (µt ,θt ,Rt ,Xt−1), where µt is the joint distribution
over (a,ε,ψ). To construction the initial conditions ξ0 we set θ0 = 1 and set X−1 = [1,0,0] to
correspond to being initially at the SRE.31. We set R0 to the second-moment matrix computed
from simulating the REE of our economy.32 µt is approximated with N = 100,000 agents. As
such, we draw N agents randomly from the distribution µ̄ and then endow all agents with some
initial beliefs ψ0.

C.2 Simulation

We now present the algorithm used for simulating the dynamics of the LR economy by detailing
the steps for going from ξt to ξt+1. Assume we enter with ξt ≡ (µt ,θt ,Rt ,Xt−1), where µt is ap-
proximated by N agents with states (ai,t ,εi,t ,ψi,t).

Algorithm 2 Time t Simulation
1: Compute Xt =

(
1, log

(
kt/k̄

)
, log(θt)

)
where kt =

1
N ∑i ai,t

2: Solve for the TE prices (rt ,wt)
3: Update Rt+1 = Rt +gt

(
Xt−1XT

t−1−Rt
)

4: Draw νt+1 and update θt+1 = νt+1θ
ρ

t
5: Update µt+1

To solve for the temporary equilibrium we first construct the labor demand curve from the
FONC of the representative firm: w = θt fn(kt ,nd

t (w)). The calibration presented in Section 5 im-
plies that labor demand is given by

nd
t (w) =

(
θt

w

)1/α

kt .

30Recall λ̄e(a′,ε) can be easly constructed from the stationary policy rules c̄(a,ε).
31Recall Xt = (1, log(kt/k̄), log(θt)).
32One could also set R0 from the ergodic second-moment matrix of the RPE. As we focus on the ergodic distribution

of the learning economy our results are not sensitive to this choice.
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At this labor demand,t he interest rate that clears the asset market is given by rt(w)= θt fk(kt ,nd
t (w))−

δ . We then construct aggregate labor supply from the individual policy rules l̂(a,ε,φ ,r,w) com-
puted in the initialization. First, compute each agent’s forecasted log deviation in the expected
shadow prices from the SRE value: φi,t = 〈ψi,t ,Xt〉. Next, we aggregate the individual labor supply
to compute aggregate labor supply as a function of the wage

ns
t (w) =

1
N ∑

i
1− l̂(ai,t ,εi,t ,φi,t , rt(w),w).

We then use the Brent root-solving algorithm to find wt that solves ns
t (wt) = nd

t (wt), and set rt =
rt(wt).

Finally, we turn to updating the distribution µt+1 which consists of

{ai,t+1,εi,t+1,ψi,t+1}N
i=1.

For each agent i, their asset next period can be computed from the pre-stored policy rules

ai,t+1 = â(ai,t ,εi,t ,φi,t ,rt ,wt).

The next period’s idiosyncratic productivity, εi,t+1, is drawn randomly from the Rouwenhorst pro-
cess conditional on εi,t . Finally, we can construct the agent’s current shadow price of savings
as

λi,t = (1+ rt)uc
(
ĉ(ai,t ,εi,t ,φi,t ,rt ,wt), l̂(ai,t ,εi,t ,φi,t ,rt ,wt)

)
,

and use it to update beliefs via the recursive learning algorithm (15):

ψi,t+1 = ψi,t +gtR−1
t+1Xt−1

(
log(λi,t/λ̄ (ai,t ,εi,t))−〈ψi,t ,Xt−1〉

)
.

D Appendices for Section 6

In this section of the Appendix we explore two additional aspects of locally rational dynamics that
are commonly addressed in analyses that involve agents modeled as adaptive learners. First, our
formal results are local in nature, as are as most theoretical results from the learning literature; so,
in the first subsection below, we consider the robustness of our findings to perturbations in beliefs
by examining the size the basin of attraction associated with our RPE. Second, our results are pred-
icated upon the assumption that all agents use a particular (and, in our view, particularly natural)
PLM. In the second subsection below, we consider outcomes of simulations that allow for subpop-
ulations of agents to use distinct PLMs, thus generating RPE with beliefs beliefs heterogeneity.

D.1 Stability Analysis

To examine the extent of our equilibrium’s basin of attraction, we simulated a range of economies,
initializing agents with the same beliefs chosen randomly from a region around the RPE. Agents’
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beliefs are randomly chosen from ψ ∈ [ψRPE
1 −0.05,ψRPE

1 +0.05]× [ψRPE
2 −0.75,ψRPE

2 −0.75]×
[ψRPE

3 − 1.25,ψRPE
2 − 1.25], and they are assumed to use a decreasing gain algorithm. Figure 9

(which, due to spacing issues, follows a figure discussed latter in this section) plots the time paths
of the cross-sectional average of beliefs for each of 60 simulations. To give scale, the horizontal
grey bars represent the support of the ergodic distribution of average beliefs under the constant
gain algorithm with gain 0.035.

Initially, we see a wide discrepancy in mean beliefs across simulations, reflecting the effect
of the randomly drawn initial conditions. Beliefs far from RPE are quickly tamed, as discrepancy
quickly shrinks and agents learn to coordinate on the RPE; however, due to our use of decreasing
gain, which puts very small weight on new information as the simulations evolve, the variance in
beliefs remains visible even after 60,000 periods (of course, asymptotically, it will vanish). The
main take-away: even for a wide range of initial beliefs, long run beliefs consistently converge to
the RPE.

Figure 8: Unstable initial beliefs

As noted, stability results in the learning literature are local in nature: some beliefs may induce
behavior that destabilizes the economy while at the same time pushing beliefs even farther from
the basin of attract. Consider, for example, an economy in which the beliefs coefficient of capital
is modestly above one. An increase in capital leads to an increase in the forecasted shadow-price
of savings, thus inducing more savings and lower consumption. When all agents hold these beliefs
their savings behavior increases aggregate capital while at the same time raising their realized
shadow prices, thus perpetuating their beliefs.

To illustrate this behavior, we consider a simulation in which we initialize all agents with the
same beliefs ψ = [0.,1.07,1.0], and then plot the time paths of the average coefficient on capital
and the capital stock in Figure 8. We can see that both feature explosive paths.
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Figure 9: Basin of attraction: stability of the RPE is robust to varied initial beliefs
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D.2 Alternative Forecasting Rules

In this section we document the behavior of our learning agents with alternative forecasting rules.
We begin by studying the stability and dynamics of the economy when populated by different
types of agents with different forecasting rules. We then document how the economy behaves
when agents are endowed with a forecasting rule which includes interactions with the individual
states.

D.2.1 Heterogeneous Forecasting Rules

The model presented in the main text assumed all agents uses the same PLM; further, under this
assumption we established that, for small enough aggregate shocks, agents held common beliefs in
the RPE. It is straightforward to extend the environment to allow for multiple types of forecasting
rules and hence heterogeneous beliefs in the RPE. In subsection we specify four agent types,
distinguished by the function form of the PLM they use, and analyze the associated RPE. The
following table identifies our agent types.

Table 3: Agent types

Agent type PLM

Type 0 log(λ̂t/λ̄t) = ψ0 +ψk log(kt−1/k)+ψθ logθt−1

Type 1 log(λ̂t/λ̄t) = ψ0

Type 2 log(λ̂t/λ̄t) = ψ0 +ψk log(kt−1/k)

Type 3 log(λ̂t/λ̄t) = ψ0 +ψθ logθt−1

The benchmark model obtains when all the agents in the economy are type 0. Here we consider
the behavior economies populated with two agent types, each comprising 50% of the population.
We begin by studying the long run behavior under a decreasing gain learning algorithm. For each
of the six economies33 and simulate the dynamics for 80,000, periods starting with all agents
having SRE beliefs, i.e. all relevant belief parameters set to zero. We plot the type paths of average
beliefs for the six economies in Figure 10. As can be readily observed from the figure, the average
beliefs of all agents settle down and eventually converge to their RPE levels. However, as the
agents have different forecasting rules, their long run belief coefficients can end up being different
from each other; also, RPE beliefs associated with a given agent type depend on the other type of
agent populating the economy.

33We consider economies populated with agents of all possible pairings of types (0,1),(0,2),(0,3),(1,2),(1,3),
and (2,3)
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Figure 10: Time paths of average beliefs for the economies (from top to bottom) populated with
types (0,1),(0,2),(0,3),(1,2),(1,3), and (2,3).
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Figure 11: Impulse responses to a one-standard deviation increase in productivity. Black line refers
to the linearized rational expectations equilibrium. The other lines represent the mean impulse
responses for the six economies populated by agents with different types of forecasting rules.
They are assumed to learn with a constant gain learning algorithm with gain 0.001.
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The RPEs identified in Figure 11 are necessarily distinct: after all, no two economies have
nested PLMs; however, the distinction does not only reflect agents’ use of different forecast mod-
els: aggregate equilibrium dynamics are different as well.

To illustrate this point, in Figure 11 we plot the impulse responses of various aggregates to
a one-standard deviation productivity shock. The black line represents the same REE line as in
Figure 4 of the main text. The remaining lines represent the impulse responses of the six locally
rational economies populated by heterogeneous types. The agents are assumed to be learning with
a constant gain learning algorithm with gain g = 0.001.

The impulse responses are constructed in the same manner as those in the main text, i.e. by
repeatedly drawing an initial distribution of assets, productivities and beliefs from the ergodic
distribution generated by long simulation. We then record the impulse responses to a one-standard-
deviation productivity shock from those initial starting points and plot the median response of all
variables as a percentage deviation from the path which would prevail in absence of a shock.

As can be readily observed from the figure, the forecasting rules used can have a significant
impact on the aggregate responses. It is of particular interest that the introduction of heterogeneous
PLMs can serve to amplify the propagation of shocks, a feature of the data that benchmark rational
models struggle to replicate. These observations suggest that expectations heterogeneity in the
form of forecast model selection in HA environments may be a fruitful area of future research.
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D.2.2 Expanded Learning Rule

We modify the agent’s expectations function to allow for interactions with idiosyncratic states by
modifying the forecasting rule, equation (13), to be

λ̂
e
t (a
′,ε,ψ) = λ̄

e (a,ε) · exp(〈ψt ,X(Xt ,a,ε)〉) . (D.20)

X(X ,a,ε) is a function to allow for arbitrary interactions of the aggregate observable, X , and the
individual states, x . Based on our analysis in Section 6 we will study the behavior of learning
models when

X(X ,a,ε) =



1
log(k/k̄)
log(θ)

log(k/k̄)(a− ā)
log(k/k̄)(log(ε)− log(ε))

log(θ)(a− ā)
log(θ)(log(ε)− log(ε))


where ā and log(ε)) are the average levels of wealth and log productivity in the stationary recursive
competitive equilibrium.

In addition to changing the agent’s forecasting rule, the agent’s learning behavior must be
adjusted slightly as the second moment matrix R will differ across agents. The recursive formula-
tion of the updating rule, equation (15), is adjusted to include the individual states xt in a similar
manner:

R̂t(a,ε,ψ,R) = R+gt · (X(Xt−1,a,ε)⊗X(Xt−1,a,ε)−R)

ψ̂t(a,ε,ψ,R) = ψ +gt · R̂t(a,ε,ψ,R)−1X(Xt−1,a,ε)

(
log

(
λ̂t (a,ε,ψ)

λ̄t (a,ε)

)
−〈ψt ,X(Xt−1,a,ε)〉

)
.

(D.21)

As each agent will have their own second moment matrix based on their unique experiences, one
of the states of the model will be µt , i.e. the contemporaneous distribution of agent-states (a,ε),
beliefs ψ , and second moment matrices R.

We explore the behavior of this model through simulation. Numerically, there are two changes
required relative to the procedure described in Section 5. First, the forecasting and learning rules
are adjusted according to equations (D.20) and (D.21). This requires tracking the individual spe-
cific second moment matrix along with individual beliefs and states. Second, the persistence of
the individual states can lead to a collinearity of the regressors which results in unstable paths of
beliefs not present in the more parsimonious learning model. This is particularly problematic for
higher gains since agents will put most weight on recent periods when idiosyncratic states will be
most similar. We resolve this problem by employing a projection facility when beliefs become too
extreme.34 As such, we will only report results for models with gains of 0.001, 0.005, and 0.01
when the projection facility is rarely implemented.35

34Agent’s beliefs are projected back to the RPE
35For the gain of 0.01 the projection facility is active for 0.06% of agents every period.
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Table 4 reports the business cycle statistics for the standard model constructed following the
same procedures as in Section 6. We see that at the lowest gain the moments are nearly identical to
the rational expectations equilibrium and changing the gain has little effect on the moments. These
results are mirrored in the impulse response plotted in Figure 12 which are almost exactly in line
with the rational expectations paths for all of the gains considered.

Expanded Forecasting Rule

Data RE g = 0.001 g = 0.005 g = 0.01
std(C)
std(Y ) 0.50 0.36 0.37 0.33 0.35
std(I)
std(Y ) 2.73 2.91 2.93 3.11 3.04

Table 4: Business Cycle Statistics for Expanded Model

As anticipated, the expanded learning rule allows the model dynamics to converge to those that
closely match the rational expectations equilibrium. We favor the parsimonious learning rule for
its simplicity and tractability. The parsimonious rule is easier for agents to implements, generates
stabler paths of beliefs, and produces results that better fit the stylized facts observed in the data.

D.3 Rational Expectations Beliefs

Here we construct the beliefs of agents in the rational expectations equilibrium. To generate these
beliefs we simulate the linearized rational expectations equilibrium as described in 5.3 and record
both the path of observables Xt . For each point in the state space (a,ε), we compute the log
deviation of the expected shadow price of wealth from its steady state counterpart:

λ̂
RE
t (a,ε)≡ Et

[
log
(

λt+1

λ t+1

)∣∣∣∣a,ε] .
We then, for each (a,ε), project λ̂ RE

t on Xt to construct the beliefs, ψRE(a,ε), that rationalize the
rational expectations equilibrium.
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Figure 12: Impulse responses to a one-standard deviation increase in productivity. Black line refers
to the rational expectations equilibrium. The blue, green and red lines refer to the mean response
of the locally rational dynamics with the expanded learning rule and gains equal to 0.001, 0.005,
and 0.01 respectively.
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D.4 Belief Regression Table

To construct the best linear predictors used in Section 6.2 we run the weighted regression

ψ
j

i = α0 +α1(ai− ā)+α2(log(εi)− log(ε))+µi, (D.22)

which regresses beliefs of agents on their state variables. The term ψ
j

i represents the jth component
of the belief vector for agent i with wealth ai and productivity εi. The regression is weighted
by the fraction of agents with states (ai,εi,ψi) in the ergodic distribution constructed through
simulation. The estimated coefficients from (D.22) are reported in table 5 below. As can be seen
in the coefficients, increasing the gain of the constant gain learning algorithm brings beliefs more
in line with rational expectations both in slope and in level.

Capital Coefficient TFP Coefficient

REE g = 0.001 g = 0.01 g = 0.035 REE g = 0.001 g = 0.01 g = 0.035

Intercept -0.4303 -0.4204 -0.3735 -0.3537 -0.5197 -0.7403 -0.6802 -0.6392
Wealth 0.0015 -0.0000 0.0001 0.0002 0.0015 0.0001 0.0005 0.0012

LogWage -0.0394 -0.0006 -0.0025 0.0054 0.1593 0.0041 0.0273 0.0336
R2 0.7315 0.0004 0.0024 0.0032 0.5246 0.0171 0.0809 0.0663

Table 5: Coefficients for the regression of beliefs on demeaned wealth and log productivity.
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